
R

Universal Host Controller Interface (UHCI)
Design Guide

REVISION 1.1

March 1996

The information in this document is under review and is subject to change.

Universal Host Controller Interface (UHCI), Revision 1.1
R

ii

THIS DOCUMENT IS PROVIDED "AS IS" WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY
WARRANTY OF MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY
OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

Intel disclaims all liability, including liability for infringement of any proprietary rights, relating to implementation of
information in this specification. Intel does not warrant or represent that such implementation(s) will not infringe
such rights.

A license is hereby granted to copy this document for internal use only. No other license, express or implied, by
estoppel or otherwise, to any other intellectual property rights is granted herein. If you wish to implement the
Universal Host Controller Interface, please refer to the licensing terms on the following page.

*Other brands and names are the property of their respective owners.

Copyright  Intel Corporation 1996

R

Universal Host Controller Interface (UHCI), Revision 1.1

iii iii

Universal Host Controller Agreement

This is a royalty-free, reciprocal license for Adopters of the USB Specification who wish to implement the Universal Host
Controller interface designed by Intel, and described in the Universal Host Controller Interface (UHCI) Design Guide, in their
USB-compliant products. By implementing this specification, you (“User”) are agreeing to be bound by the terms of this
agreement. If you do not agree to them, then you have no license to use the specification, and you should destroy these materials or
return them to Intel.

Eligible Licensees: The licenses granted in this Agreement shall only extend to a party who has executed and is bound by the
agreement executed by Intel and other parties entitled “USB Reciprocal Covenant” relating to the USB Specification.

Agreement: Effective as of User’s acceptance of this Agreement, and subject to its terms and conditions, Intel Corporation (“Intel”) and
User agree as follows:

License: Intel and User each grant to the other and its parents and subsidiaries, under any claim of a patent or patent application
otherwise infringed, a non-exclusive, royalty-free, non-transferable, world-wide license, without rights to sublicense, to make or have
made such party’s products which implement the Interface solely in connection with implementing the USB Specification, and to use,
sell, offer to sell, and import such products, where infringement of such claims would not have occurred but for the implementation and
incorporation of the Interface in such products, and there is no feasible alternative to such infringement.

“Interface” means interface specification described in the document entitled “Universal Host Controller Interface (UHCI) Design Guide”
published by Intel, and any circuitry described therein.

“USB Specification” means a revision of the “Universal Serial Bus Specification,” numbered 1.0 or greater, published and made
available for industry licensing by Intel and the other USB promoters.

No Other Licenses. Except for the rights expressly provided by this Agreement, neither party grants or receives, by implication, or
estoppel, or otherwise, any rights under any patents or other intellectual property rights. Licenses to the USB Specification are to be
granted by a separate document.

LIMITATION OF LIABILITY: The Interface is provided "AS IS" without warranty of any kind. INTEL OFFERS NO OTHER WARRANTY
EITHER EXPRESS OR IMPLIED INCLUDING THOSE OF MERCHANTABILITY, NONINFRINGEMENT OF THIRD-PARTY
INTELLECTUAL PROPERTY OR FITNESS FOR A PARTICULAR PURPOSE. NEITHER INTEL NOR ITS SUPPLIERS SHALL BE
LIABLE FOR ANY DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS PROFITS,
BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER LOSS) ARISING OUT OF THE USE OF OR INABILITY
TO USE THE INTERFACE, EVEN IF INTEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME
JURISDICTIONS PROHIBIT THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES,
THE ABOVE LIMITATION MAY NOT APPLY TO YOU.

TERMINATION OF THIS LICENSE: Intel may terminate this license at any time if you are in breach of any of its terms and conditions.
Upon termination, you will immediately destroy the Interface or return all copies of the Interface to Intel along with any copies you have
made.

U.S. GOVERNMENT RESTRICTED RIGHTS: The Interface is provided with "RESTRICTED RIGHTS." Use, duplication or disclosure by
the Government is subject to restrictions set forth in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor. Use of the
Interface by the Government constitutes acknowledgment of Intel's rights in them .

APPLICABLE LAWS: Any claim arising under or relating to this Agreement shall be governed by the laws of Delaware. You may not
export the Interface in violation of applicable export laws.

Universal Host Controller Interface (UHCI), Revision 1.1
R

iv

R

Universal Host Controller Interface (UHCI), Revision 1.1

v v

Table Of Contents
1. OVERVIEW... 2

1.1 DATA TRANSFER TYPES .. 3
1.1.1 FRAME TIME FOR DATA TRANSFERS... 4

1.2 UHCI DATA STRUCTURES .. 5
1.2.1 FRAME LIST.. 5
1.2.2 TRANSFER DESCRIPTORS.. 5
1.2.3 QUEUE HEADS... 6

1.3 SCHEDULING ... 7
1.3.1 HARDWARE CONTROL FOR FULL SPEED TRANSFER BANDWIDTH RECLAMATION........................... 7

1.4 ROOT HUB/PORTS .. 7

2. REGISTER DESCRIPTION... 10

2.1 USB I/O REGISTERS.. 11
2.1.1 USBCMDUSB COMMAND REGISTER..11
2.1.2 USBSTSUSB STATUS REGISTER..13
2.1.3 USBINTRUSB INTERRUPT ENABLE REGISTER..14
2.1.4 FRNUMFRAME NUMBER REGISTER...14
2.1.5 FLBASEADDFRAME LIST BASE ADDRESS REGISTER...15
2.1.6 START OF FRAME (SOF) MODIFY REGISTER ...15
2.1.7 PORTSCPORT STATUS AND CONTROL REGISTER...16

2.2 PCI CONFIGURATION REGISTERS (USB).. 19
2.2.1 CLASSCCLASS CODE REGISTER ...19

2.2.2 USBBASEIO SPACE BASE ADDRESS REGISTER ..19
2.2.3 SBRNSERIAL BUS RELEASE NUMBER REGISTER...19

3. DATA STRUCTURES ... 20

3.1 FRAME LIST POINTER... 20
3.1.1 FRAME LIST POINTER (DWORD)...20

3.2 TRANSFER DESCRIPTOR (TD) ... 20
3.2.1 TD LINK POINTER (DWORD 0: 00-03H) ...21
3.2.2 TD CONTROL AND STATUS (DWORD 1: 04-07H) ...22
3.2.3 TD TOKEN (DWORD 2: 08-0BH)...24
3.2.4 TD BUFFER POINTER (DWORD 3: 0C-0FH) ..25
3.2.5 RESERVED FOR SOFTWARE (DWORDS [7:4])...25

3.3 QUEUE HEAD (QH) .. 25
3.3.1 QUEUE HEAD LINK POINTER (DWORD 0: 00-03H) ...25
3.3.2 QUEUE ELEMENT LINK POINTER (DWORD 1: 04-07H) ..26

3.4 SCRIPT AND DATA TRANSFER PRIMITIVES.. 26
3.4.1 EXECUTING THE SCHEDULE ...26
3.4.2 TRANSFER QUEUING ...31

4. INTERRUPTS ... 35

4.1 TRANSACTION BASED.. 35
4.1.1 CRC ERROR / TIME-OUT ..35
4.1.2 INTERRUPT ON COMPLETION (IOC)..35
4.1.3 SHORT PACKET DETECT (SPD) ...36
4.1.4 SERIAL BUS BABBLE ..36
4.1.5 STALLED..36
4.1.6 DATA BUFFER ERROR..36
4.1.7 BIT STUFF ERROR ..36

Universal Host Controller Interface (UHCI), Revision 1.1
R

vi

4.2 NON-TRANSACTION BASED ... 37
4.2.1 RESUME RECEIVED..37
4.2.2 HOST CONTROLLER PROCESS ERROR..37
4.2.3 HOST SYSTEM ERROR..37

5. KEYBOARD AND MOUSE LEGACY SUPPORT .. 38

5.1 OPERATION ... 38
5.1.1 COMMANDS GOING TO THE KBC, KEYBOARD, OR MOUSE ..38
5.1.2 KEYSTROKE OR MOUSE DATA RECEIVED..39

5.2 REGISTER INTERFACE ... 39
5.2.1 LEGSUPLEGACY SUPPORT REGISTER (PCI CONFIGURATION - FUNCTION 2)..39
5.2.2 KBC ACCESS LOGIC...41

5.3 OTHER CONSIDERATIONS ... 41

REVISION HISTORY
Date of Revision Version Description
November, 1995 1.0 Original Version
March 21, 1996 1.1 Additional USB 0.99 to 1.0 specification changes, clarifications, and Legacy

Keyboard and Mouse support .

R

Universal Host Controller Interface (UHCI), Revision 1.1

1

Universal Host Controller Interface (UHCI)

This document describes a Universal Host Controller Interface (UHCI) for a device that implements a Universal
Serial Bus (USB) Host Controller. The document is intended for hardware vendors. The UHCI description covers
the hardware/software interface between the Host Controller Software Driver and the Host Controller hardware
(shaded area in Figure 1). It describes the register-level hardware interface to the USB Host Controller. Hardware
developers may take advantage of the standard software drivers written to be compatible with this Universal Host
Controller Interface by conforming to the register level interface and memory data structures described in this
document.

The UHCI consists of two partsHost Controller Driver (HCD) and Host Controller (HC). The HCD software is
responsible for scheduling the traffic on USB by posting and maintaining transactions in system memory. HCD is
part of the system software and is typically provided by the operating system vendor. For example, Microsoft
Corporation will fully support UHCI.

The Host Controller moves data between system memory and devices on the USB by processing these data
structures and generating the transaction on USB. Note that the high transfer rates on USB means that the Host
Controller should use a high bandwidth interface to system memory. For the implementation example in this
document, the Host Controller is a PCI device. PCI Bus master capability in the Host Controller permits high
performance data transfers to system memory.

Some of the key features of UHCI include:

• Ease Of Use. The reduced hardware complexity makes the Host Controller easy to implement. In addition,
standard UHCI software drivers (HCD) will be supported by companies like Microsoft Corporation. Other
operating system vendors can make use of the portability of the HCD software. Note that the run-time portion of
the HCD software is operating system independent. The initialization code is easily tailored for a particular
operating system.

• Minimize Cost. An optimal partition between software and hardware operations was selected to minimize Host
Controller gate count, maximize performance, and maintain flexibility.

• Flexibility. The UHCI Host Controller can be implemented in a wide range of products from a stand-alone
device to integration into a PCI chipset.

• Reduced Hardware Complexity. The Host Controller can be implemented with about 10,000 gates. The low
gate count and few number of pins needed makes this function easily integrated into a chipset. The UHCI
software/hardware interface was designed to minimize Host Controller hardware complexity.

− Data structures are manipulated by the Host Controller in a very simple fashion. All pointers are set by
software and the only operation by the hardware is a copy of the link pointers. No numerical operations are
required on data structure pointers.

− The basic data structure (transfer descriptor) for both isochronous and queued transfers use the same form
(fields in the structure determine transfer type behaviors). This simplifies decode logic.

− The Host Controller transfers the appropriate data over USB by executing a schedule list of transactions set
up in system memory by the HCD software. In UHCI, the Host Controller execution of this schedule is
inherently tied directly to the real-time nature of isochronous transfers. The frame counter in the Host
Controller that is needed to provide a frame count number for the Start Of Frame (SOF) packet is also used to
index into the schedule list. No address calculations are necessary. The Host Controller simply walks the
schedule list one entry at a time as it generates the next 1 ms frame.

− The UHCI register set can be implemented with eight hardware registers, including two root hub port registers.
To prevent conflicts with other I/O devices, the USB I/O register set can be re-located in the I/O address
space by programming one of the Host Controller’s PCI configuration registers.

• Increased System Performance. UHCI maximizes the use of the USB bus and minimizes the impact on other
system buses.

Universal Host Controller Interface (UHCI), Revision 1.1
R

2

− UHCI minimizes end of frame idle time on USB. Potentially idle time in a 1-ms USB frame can be reclaimed to
within a 32- or 64-byte packet.

− Data structures and their manipulation by the Host Controller were designed to minimize bus traffic to system
memory. For example, during isochronous transfers, the Host Controller only needs to fetch one data
structure (transfer descriptor) from system memory to generate a transaction.

• Legacy Keyboard and Mouse Support. While not required by UHCI, Section 5 documents a method to
provide support for legacy software which directly accesses an 8042 device-based keyboard and mouse
controller.

Universal Serial
Bus Driver (USBD)

Universal Host
Controller Driver (HCD)

Universal Host
Controller (HC)

USB Device

USB

Scope Of
UHCI

usb_blk.drw

Hardware

Client Driver Software

System
Software

765001

Figure 1. Universal Serial Bus System Block Diagram

1. OVERVIEW

A USB Host System is composed of a number of hardware and software layers. Figure 1 shows a conceptual
representation of these layers.

• USB Driver (USBD). The USBD system software that supports USB in a particular operating system.

• Client driver software. This software executes on the host PC corresponding to a particular USB device. Client
software is typically part of the operating system or provided with the USB device.

• Host Controller Driver (HCD). HCD provides the software layer between the Host Controller hardware and the
USBD. The UHCI’s HCD interprets requests from the USBD and builds Frame List, Transfer Descriptor, Queue
Head, and data buffer data structures for the Host Controller. The data structures are built in system memory
and contain all necessary information to provide end-to-end communication between client software in the host
and devices on the USB.

• Host Controller (HC). The Host Controller is managed by the HCD software layer. The UHCI’s Host Controller
executes the schedule lists generated by HCD and reports the status of transactions on the USB to HCD.

R

Universal Host Controller Interface (UHCI), Revision 1.1

3

Command execution includes generating serial bus token and/or data packets based on the command and
initiating transmission on USB. For commands that require the Host Controller to receive data from the USB
device, the Host Controller receives the data and then transfers it to the system memory pointed to by the
command. The UHCI’s HCD provides sufficient commands and data to keep ahead of the Host Controller
execution and analyzes the results as the commands are completed.

• USB Device. This is a hardware device that performs a useful end-user function. Interactions with USB devices
flow from the applications through the software and hardware layers to the USB devices.

1.1 Data Transfer Types

USB transfers data associated with client software on the host to an endpoint on a USB device. A particular device
may have multiple endpoints. USB defines four transfer types:

• Isochronous. The Isochronous type is characterized by a constant, fixed rate transfer between the USB device
and the host. This service is needed for devices that continuously consume or produce data at a fixed rate.
Some examples of this class of device would be audio CODECs (microphones or speaker systems) and
telephony devices. Isochronous service does not guarantee data delivery. Failed transactions are not retried.
The Isochronous data structure elements are always retired after execution, regardless of the outcome of the
transaction. See Data Structure section for a definition of Transfer Descriptors (Active Bit).

• Interrupt. Small, spontaneous data transfers from a device. The Interrupt transfer type supports devices that
require a predictable service interval but do not necessarily produce a predictable flow of data. Interrupt
transfers are input only and typically used for devices such as keyboards and pointing devices that may not
produce data for long periods of time but require quick response when they do have data to send.

• Control. Transfers that convey device control, status, and configuration information. The Control transfer type
is used to provide a control channel from the Host to USB devices. Control transfers always consist of a setup
phase and zero or more data phases followed by a status phase. It is critical that control transfers to a given
endpoint are handled in a FIFO manner. If Control transfers to the same endpoint are interleaved, unpredictable
behavior could result.

• Bulk. The purpose of Bulk traffic is to provide a guaranteed transmission of data between client and host under
relaxed latency requirements. This transfer type is typically used by devices that need to move large amounts of
data but are able to tolerate relatively large service latencies (e.g., printers).

To provide a guaranteed delivery mechanism, Interrupt, Control, and Bulk Transfer Descriptors are retried if they do
not complete successfully. The number of times that a particular Transfer Descriptor is retried is bounded by the
cumulative error counter contained in the Transfer Descriptor. If the permitted error count is exhausted, the Host
Controller deactivates the Transfer Descriptor by clearing its ACTIVE bit. Software must provide any error recovery
mechanism required to deal with the problem.

On the USB, 1-ms frame times are used to transfer data. The Host Controller begins each frame by generating a
Start Of Frame (SOF). In UHCI, if there is isochronous data to be transferred, the Host Controller Driver schedules
this data first. The Host Controller Driver ensures that there is enough time to complete all scheduled isochronous
and interrupt transfers with some time remaining for control and bulk transfers (see Scheduling Section).

SOF Isochronous
Data

B u lk

D ata

EOF

Time

1 m s

C on tro l

D a ta

In te rrup t

D ata

765002

Figure 2. Transfer Type Schedule Order

Universal Host Controller Interface (UHCI), Revision 1.1
R

4

1.1.1 FRAME TIME FOR DATA TRANSFERS

The Host Controller supports real-time data delivery by generating a Start Of Frame (SOF) packet every 1 ms. The
SOF packet is generated when the SOF Counter in the Host Controller (Figure 3) expires. The Host Controller
initializes the SOF Counter for a 1-ms frame time. Minor adjustments can be made to this value (and thus, the
frame time period) by programming the SOF Modify Register. This feature permits minor changes to be made to
the frame time period, if necessary, to maintain real-time synchronization throughout a USB system.

The Host Controller includes a frame number in each SOF packet. This frame number uniquely identifies the frame
period in real time. The End of Frame (EOF) condition occurs at the end of the 1-ms time interval at which time the
Host Controller begins the next frame time by generating another SOF packet with its corresponding frame number.
Inside a frame period, data is transferred as packets of information. The frame time period is strictly enforced by the
Host Controller and data packets in the current frame are not allowed to extend beyond the EOF (see Chapter 11 in
the Universal Serial Bus Specification).

The Host Controller maintains real-time frame-to-data transfer synchronization by tying the frame number to the
execution of a particular entry in the Frame List. The Host Controller’s Frame Counter generates the frame number
(11-bit value) and includes it in each SOF packet. The counter is programmable via the Frame Number Register
and increments every frame period.

The Host Controller uses the lower 10 bits of the frame number as an index into a 1024 entry Frame List that is
stored in system memory. Thus, since the frame count drives the Frame List entry selection, the Host Controller
processes each Frame List entry in a prescribed frame period. The Host Controller increments to the next Frame
List entry for each new frame. This ensures that isochronous transfers are executed in a particular frame.

SOF Counter

SOF Modify
Register

12 MHz Frame Counter

Frame Number
Register

7 Bits

1 msec
Host Controller

Frame
List

System Memory

Frame List Index (A[11:2])
(Increments Each Frame Time)

11 Bits

Frame List Base
Address Register

Lower
10 Bits

20 Bits
Frame List Base
Address (A[31:12])

0

1023

Pointer
Pointer
Pointer

Pointer

cntl
cntl
cntl

cntl

765003

Figure 3. Frame Number Ties Frame List to Real Time

R

Universal Host Controller Interface (UHCI), Revision 1.1

5

1.2 UHCI Data Structures

The UHCI data structures include a Frame List, Isochronous Transfer Descriptors, Queue Heads, and queued
Transfer Descriptors. These data structures are used by HCD software to construct a “schedule” in host memory for
the Host Controller to execute (Figure 4). The Host Controller is programmed with the starting address of the Frame
List, then released to “execute” the schedule, without any overt synchronization with HCD. Transfer descriptors
point to data buffers and include information about the addressing, data, and general behavior characteristics of the
transaction.

Flow through the schedule is based on link pointers in the Frame List, Transfer Descriptors, and Queue Heads. Link
Pointers are the fundamental component used to connect all the scheduled data “objects” together. The Host
Controller uses the link pointer to determine where to find the next transfer descriptor to execute. Addresses in the
link pointer fields must be a physical address and not a virtual address.

At the start of a frame, the Host Controller repeatedly follows link pointers, beginning at the current Frame List
index, pausing its traversal to perform transactions described in Transfer Descriptors, and stopping when the frame
expires (or a terminate bit is set on a horizontal flow execution).

1.2.1 FRAME LIST

The Frame List is an array of up to 1024 entries that represent a window in time. Each entry corresponds to a
particular frame (1 ms). An entry serves as a reference to the transactions the Host Controller should conduct
during that frame. Each entry contains a pointer to other data structures (Transfer Descriptors or Queue Heads)
and control bits. The Host Controller does not update fields in the Frame List. The fields in the Frame List entries
are managed by HCD software.

The Host Controller accesses the Frame List using the contents of the Frame List Base Address Register and the
Frame Counter (Figure 3). The Frame List Base Address Register provides the base location of the Frame List
Table in system memory and the Frame Counter provides the index into the list. The 4-Kbyte Frame List Table is
aligned on a 4-Kbyte boundary.

The Host Controller does not execute beyond the 1 ms allocated to the current frame. HCD insures that any
manipulation of entries be accomplished in a way that does not cause a coherency problem if the Host Controller
needs to access the same entry.

1.2.2 TRANSFER DESCRIPTORS

Transfer Descriptors (TDs) contain a pointer to a data buffer and contain control and status fields for the data and
its transmission or reception. Note that a TD could optionally have no data buffer associated with it (i.e., NULL
data). There are TDs for isochronous transfers and queued transfers (interrupt TDs, control TDs, and bulk TDs). All
TDs have the same structure. During execution, the Host Controller may update fields in the TD, as appropriate. It
must maintain the TD in a consistent state (i.e., not allow accesses to partially modified TD).

For isochronous operations, the UHCI HCD software builds separate TDs for each transfer and links them into the
schedule in the correct frame as requested by USBD. All temporal ordering is the responsibility of software. The
Host Controller fetches the TD and generates the proper transaction on USB. The execution flow is always
horizontal as shown in Figure 4. For isochronous transfers, TDs are linked to a specific point in real time. TDs that
do not complete successfully on time are not retried. In the example in Figure 4, the TD list is horizontally executed
until the end of the TD list is reached. The last TD in the list points to a Queue Head for processing of queued
Transfer Descriptors.

For non-isochronous operations see Section 1.2.3—Queue Heads.

Universal Host Controller Interface (UHCI), Revision 1.1
R

6

Ba se Index

2111231

Frame
Counter

Frame List

Isochronous
Transfer Descriptors

Horizontal Execution

Queue Heads

Execution By Breadth
(Horizontal Execution)

Execution
By Depth
(Vertical
Execution)

Link
Pointer

Element
Link
Pointer

Link
Pointer

Element
Link
Pointer

Element
Link
Pointer

TQ

TQ

TQ

Frame Pointer

Frame Pointer

Frame Pointer

Q=Transfer Descriptor or Queue Head
T=Terminate

Frame List Base
Address Register

TD

TD

TD

TD

TD

TD

TD

TD

TD

TD T D TD

TD T D TD QHQHQH

00

Link
Pointer

Element
Link
Pointer

TD

TD

TD

QH

TD

TD

TD

TQFrame Pointer

TD T D TD

Interrupt Control and Bulk

Queue Heads

765004

Figure 4. Example Schedule

1.2.3 QUEUE HEADS

Queue Heads (QH) are data structures that organize non-isochronous transfer descriptors into queues. A QH and
associated TD list form a “Q Context”. Interrupt, Control, and Bulk, data transfer types can be placed in queues.
The UHCI first services Interrupt queues followed by control queues and if there is time remaining, bulk queues.
During execution, the Host Controller updates fields in the TDs and QHs, as appropriate.

Queues can be accessed directly from a Frame List entry or from the last TD in an isochronous TD list. Queues can
also be accessed from a prior Queue Context. QHs contain two link pointersa vertical pointer that selects the next
TD in the Q Context to be processed and a horizontal pointer that provides a link to the next QH or TD to be
processed. Note that the vertical pointer could also point to another QH. See the “Transfer Queuing” section for
additional information on Queues. Queued transfers that do not complete successfully can be retried.

When queues are being processed, execution flow can be from one TD to the next within a Q Context (execution by
depth) or from one QH to the next QH (execution by breadth) where only one TD in each Q Context is executed at
a time. A field in the executing TD (Vf field) determines whether the execution is by depth or breadth.

For execution by depth, the execution flow traverses vertically through the TDs of the same Q Context until the end
is reached or TD execution is blocked; in which case, the execution flow moves to the next QH in the link. For
execution by breadth, one TD is executed in a Q Context and then the flow is to the next QH where the first TD in
that Q Context is executed, and so on. See Section 3.4 for a more complete description.

R

Universal Host Controller Interface (UHCI), Revision 1.1

7

1.3 Scheduling

The HCD software sets up and manages the data structures to ensure that Isochronous traffic has the highest
priority in the Host Controller. The HCD scheduling allows up to 90% of the frame bandwidth to be allocated to
isochronous and interrupt traffic, and up to 10% of the frame bandwidth for control. Any remaining bandwidth can
be reclaimed for control and bulk transfers.

Scheduling with the UHCI is handled by a Frame List (up to 1024 entries). Each entry is a pointer to the first
structure to process in a given frame. Because these pointers are a full 32 bits long, a 1024 entry Frame List
occupies 4096 bytes of memory (one page).

Control and bulk transfers are scheduled last to allow bandwidth reclamation on a lightly loaded USB. Bandwidth
reclamation allows the hardware to continue executing a schedule until time runs out in the frame, cycling through
queue entries as frame time allows. Control is scheduled first to prioritize it over bulk transfers. Also, the software
does the scheduling to guarantee that at least 10% of the bandwidth is available for control transfers. UHCI only
allows for bandwidth reclamation of full speed control and bulk transfers. The software must schedule low speed
control transfers such that they are guaranteed to complete within the current frame. Low speed bulk transfers are
not allowed by the USB specification. If full speed control or bulk transfers are in the schedule, the last QH points
back to the beginning of the full speed control and bulk queues to allow bandwidth reclamation. As long as time
remains in the frame, the full speed control and bulk queues continue to be processed. If bandwidth reclamation is
not required, the last QH contains a terminate bit to inform the Host Controller to wait until the beginning of the next
frame.

1.3.1 HARDWARE CONTROL FOR FULL SPEED TRANSFER BANDWIDTH RECLAMATION

For full speed control and bulk bandwidth reclamation, the Host Controller hardware uses a preSOF time point
(Figure 5) to determine if there is enough time to execute the selected size transaction (32- or 64-byte packet size
as programmed in the USB Command Register). The preSOF point permits the Host Controller to maximize
bandwidth efficiency by reclaiming potential idle time on the bus to within a 32- or 64-byte full speed packet. Note
that any packets which may be subjected to bandwidth reclamation must not be any larger in size than the value
(32- or 64- byte) programmed into bit 7 of the USB Command register. Note that for any packets larger than the
programmed size (32- or 64-byte), the scheduling software must guarantee that bandwidth is available for its
completion within the frame.

The preSOF point also prevents a packet that may not fit in the remaining frame period from being initiated. If the
preSOF point has already occurred as the Host Controller is transitioning out of the status update phase of the
command, the Host Controller does not fetch the next command in this frame (Figure 5, Case A). If the preSOF
point is reached during the fetch of the next command's Transfer Descriptor (TD) or during the initial write data
fetch (up to 32 bytes), the command is aborted (Figure 5, Case B). No data is written back to memory. If the Host
Controller starts the transaction on the bus before preSOF, the command runs to completion, but is the last TD
executed in that frame's list (Figure 5, Case C).

1.4 Root Hub/Ports

The Host Controller is required by the USB Specification to implement the root hub. Hubs provide the electrical
interface between USB devices and the host and provide data control for transfers. Hubs can also optionally provide
power management capabilities. For the Host Controller implementation described in this design guide, the root hub
is integrated into the Host Controller and has two ports (Figure 6). UHCI permits additional ports to be implemented
up to the maximum specified by the USB Specification.

The flow of information towards the host is referred to as upstream traffic and the flow of information away is
referred to as downstream traffic. For details on hub operations, refer to Chapter 11 of the USB Specification. The
UHCI root hub downstream port characteristics and operation conform to the specifications described in chapter 11.

For UHCI implementation described in this design guide, the root hub provides data flow control. Power
management control for individual ports is beyond the scope of this UHCI Design Guide.

Universal Host Controller Interface (UHCI), Revision 1.1
R

8

n msec n+1

PreSOF Points
32

Bytes
64

Bytes

Frame Period (1ms)

SOF

EOF
Time

SOF Data Packet Data Packet

Last Packet IdleCase A

 Packet Last Packet

Last Packet Idle

Fetch

Case B

Case C

SOF

SOF

SOF

Fetch

64 Byte Reclamation Packet Size Examples

EOF
Time

EOF
Time

EOF
Time

765005

Figure 5. Frame Period

Host

Host Controller/
Root Hub

Port1 Port2

Hub 3Hub 2

Hub 1

Function

Function

Function

Function Function

Function

Function

FunctionFunction

765006

Figure 6. Hub Topology

R

Universal Host Controller Interface (UHCI), Revision 1.1

9

Chapter 11 of the USB specification describes software commands used for controlling and obtaining status of hubs
and ports. The UHCI’s HCD abstracts these commands and uses them to set or read the appropriate bits in the
Host Controller registers. These commands are shown in Table 1.

Table 1. Host Controller Register bit affected By Port Commands
Command Register Name Register Bits Comment

Hub Descriptors None None Implemented in HCD Software.
Does not affect hardware.

ClearHubFeature None None Not part of UHCI Design Guide

ClearPortFeature Port Status and Control 1, 2, 3, 8, 9, 12 Register Read or Write.

GetBusState Port Status and Control 4, 5 Register Read

GetHubDescriptor None None Implemented in HCD Software.
Does not affect hardware.

GetHubStatus None None Implemented in HCD Software.
Does not affect hardware.

GetPortStatus Port Status And Control 0, 1, 2, 3, 8,

9, 12

Register Read. Reports Current
Connect Status and current
Connect Status Change; Port
Enable/Disable and
Enable/Disable Change; Low
Speed Device Attached.

SetHubDescriptor None None Implemented in HCD Software.
Does not affect hardware.

SetHubFeature None None Not part of UHCI Design Guide

SetPortFeature Port Status and Control 0, 1, 2, 3, 8, 9,
12

Register Write

Universal Host Controller Interface (UHCI), Revision 1.1
R

10

2. REGISTER DESCRIPTION

I/O registers are required for specific communications between the CPU and the Host Controller that are not
efficiently handled via main system memory. The USB Host Controller module contains two sets of software
accessible registersI/O registers and optional PCI configuration registers. Note that the PCI configuration
registers are only needed for PCI devices that implement the Host Controller.

1. USB Host Controller I/O Registers. This block of Control and Status registers is I/O mapped into PCI I/O
space and controls the various operations of the USB (Table 2). The Base portion of the address location is set
via a PCI configuration register.

2. PCI Configuration Registers (For PCI devices). In addition to the normal PCI header and device-specific
registers, two registers are needed in the PCI Configuration space to support USB (Table 3). The normal PCI
header and device specific registers are beyond the scope of this document (The CLASSC register is shown in
this document). Note that HCD does not interact with the PCI configuration space. This space is used only by
the PCI enumerator to identify the USB Host Controller, and assign the appropriate system resources.

The following notation is used to describe register access attributes:

RO Read Only. If a register is read only, writes have no effect.
WO Write Only. If a register is write only, reads have no effect.
R/W Read/Write. A register with this attribute can be read and written. Note that individual bits in some

read/write registers may be read only.
R/WC Read/Write Clear. A register bit with this attribute can be read and written. However, a write of a 1 clears

(sets to 0) the corresponding bit and a write of a 0 has no effect.

Table 2. USB Host/Controller I/O Registers

I/O Address Mnemonic Register Description Register Access

Base + (00−01h) USBCMD USB Command R/W

Base + (02−03h) USBSTS USB Status R/WC

Base + (04−05h) USBINTR USB Interrupt Enable R/W

Base + (06−07h) FRNUM Frame Number R/W**

Base + (08−0Bh) FRBASEADD Frame List Base Address R/W

Base + 0Ch SOFMOD Start Of Frame Modify R/W

Base + (10−11h) PORTSC1 Port 1 Status/Control R/WC**

Base + (12−13h) PORTSC2 Port 2 Status/Control R/WC**

** NOTE: These registers are WORD writeable only. Byte writes to these registers have unpredictable effects.

Table 3. PCI Configuration Registers For USB (PCI Devices Only)
Configuration

Offset
Mnemonic Register Register

Access

00−08h  Register implementation as needed for specific PCI device 

09−0Bh CLASSC Class Code RO

0C−1Fh  Register implementation as needed for specific PCI device 

20−23h USBBASE IO Space Base Address R/W

24−5Fh  Register implementation as needed for specific PCI device 

60h SBRN Serial Bus Release Number RO

61−FFh  Register implementation as needed for specific PCI device 

R

Universal Host Controller Interface (UHCI), Revision 1.1

11

2.1 USB I/O Registers

This section describes the block of USB registers that are located in normal I/O space. The “base” portion of the I/O
address is selected via a PCI Configuration register.

Some of the read/write register bits which deal with changing the state of the USB hub ports function such that on
read back they reflect the current state of the port and not necessarily the state of the last write to the register.
This allows the software to poll the state of the port and wait until it is in the proper state before proceeding. A Host
Controller Reset, Global Reset, or Port Reset will immediately terminate a transfer on the affected ports and
disable the port. This affects the USBCMD register, bit [4] and the PORTSC registers, bits [12,6,2]. See
individual bit descriptions for more detail.

2.1.1 USBCMDUSB COMMAND REGISTER

I/O Address: Base+ (00−01h)
Default Value: 0000h
Attribute: Read/Write
Size: 16 bits

The Command Register indicates the command to be executed by the serial bus host controller. Writing to the
register causes a command to be executed. The table following the bit description provides additional information
on the operation of the Run/Stop and Debug bits.

Bit Description

15:8 Reserved.

7 Max Packet (MAXP). 1=64 bytes. 0=32 bytes. This bit selects the maximum packet size that can be
used for full speed bandwidth reclamation at the end of a frame. This value is used by the Host
Controller to determine whether it should initiate another transaction based on the time remaining in
the SOF counter. Use of reclamation packets larger than the programmed size will cause a Babble
error if executed during the critical window at frame end. The Babble error results in the offending
endpoint being stalled. Software is responsible for ensuring that any packet which could be executed
under bandwidth reclamation be within this size limit.

6 Configure Flag (CF). HCD software sets this bit as the last action in its process of configuring the
Host Controller. This bit has no effect on the hardware. It is provided only as a semaphore service for
software.

5 Software Debug (SWDBG). 1=Debug mode. 0=Normal Mode. In SW Debug mode, the Host
Controller clears the Run/Stop bit after the completion of each USB transaction. The next transaction is
executed when software sets the Run/Stop bit back to 1. The SWDBG bit must only be manipulated
when the controller is in the stopped state. This can be determined by checking the HCHalted bit in the
USBSTS register.

4 Force Global Resume (FGR). 1=Host Controller sends the Global Resume signal on the USB.
Software sets this bit to 0 after 20 ms has elapsed to stop sending the Global Resume signal. At that
time all USB devices should be ready for bus activity. The Host Controller sets this bit to 1 when a
resume event (connect, disconnect, or K-state) is detected while in global suspend mode. Software
resets this bit to 0 to end Global Resume signaling. The 1 to 0 transition causes the port to send a
low speed EOP signal. This bit will remain a 1 until the EOP has completed.

3 Enter Global Suspend Mode (EGSM). 1=Host Controller enters the Global Suspend mode. No USB
transactions occurs during this time. The Host Controller is able to receive resume signals from USB
and interrupt the system. Software resets this bit to 0 to come out of Global Suspend mode. Software
writes this bit to 0 at the same time that Force Global Resume (bit 4) is written to 0 or after writing bit 4
to 0. Software must also ensure that the Run/Stop bit (bit 0) is cleared prior to setting this bit.

Universal Host Controller Interface (UHCI), Revision 1.1
R

12

Bit Description

2 Global Reset (GRESET). When this bit is set, the Host Controller sends the global reset signal on the
USB and then resets all its logic, including the internal hub registers. The hub registers are reset to
their power on state. This bit is reset by the software after a minimum of 10 ms has elapsed as
specified in Chapter 7 of the USB Specification.

Note: Chip Hardware Reset has the same effect as Global Reset (bit 2), except that the Host
Controller does not send the Global Reset on USB.

1 Host Controller Reset (HCRESET). When this bit is set, the Host Controller module resets its internal
timers, counters, state machines, etc. to their initial value. Any transaction currently in progress on
USB is immediately terminated. This bit is reset by the Host Controller when the reset process is
complete.

The HCReset effects on Hub registers are slightly different from Chip Hardware Reset and Global USB
Reset. The HCReset affects bits [8,3:0] of the Port Status and Control Register (PORTSC) of each
port. HCReset resets the state machines of the Host Controller including the Connect/Disconnect state
machine (one for each port). When the Connect/Disconnect state machine is reset, the output that
signals connect/disconnect are negated to 0, effectively signaling a disconnect, even if a device is
attached to the port. This virtual disconnect causes the port to be disabled. This disconnect and
disabling of the port causes bit 1 (connect status change) and bit 3 (port enable/disable change) of the
PORTSC to get set. The disconnect also causes bit 8 of PORTSC to reset. About 64 bit times after
HCReset goes to 0, the connect and low-speed detect will take place and bits 0 and 8 of the PORTSC
will change accordingly.

0 Run/Stop (RS). 1=Run. 0=Stop. When set to a 1, the Host Controller proceeds with execution of the
schedule. The Host Controller continues execution as long as this bit is set. When this bit is set to 0,
the Host Controller completes the current transaction on the USB and then halts. The HC Halted bit in
the status register indicates when the Host Controller has finished the transaction and has entered the
stopped state. The Host Controller clears this bit when the following fatal errors occur: consistency
check failure, PCI Bus errors.

Table 4. Run/Stop, Debug Bit Interaction
SWDBG
(Bit 5)

Run/Stop
(Bit 0)

Operation

0 0 If executing a command, the Host Controller completes the command and then
stops. The 1.0 ms frame counter is reset and command list execution resumes
from start of frame using the frame list pointer selected by the current value in
the FRNUM register. (While Run/Stop=0, the FRNUM register can be
reprogrammed).

0 1 Execution of the command list resumes from Start Of Frame using the frame list
pointer selected by the current value in the FRNUM register. The Host Controller
remains running until the Run/Stop bit is cleared (by Software or Hardware).

1 0 If executing a command, the Host Controller completes the command and then
stops and the 1.0 ms frame counter is frozen at its current value. All status are
preserved. The Host Controller begins execution of the command list from
where it left off when the Run/Stop bit is set.

1 1 Execution of the command list resumes from where the previous execution
stopped. The Run/Stop bit is set to 0 by the Host Controller when a TD is being
fetched. This causes the Host Controller to stop again after the execution of
the TD (single step). When the Host Controller has completed execution, the
HC Halted bit in the Status Register is set.

2.1.1.1 Debug Mode/Single Step

When the USB Host Controller is in Software Debug Mode (USBCMD Register bit 5=1), the single stepping
software debug operation is as follows:

R

Universal Host Controller Interface (UHCI), Revision 1.1

13

To Enter Software Debug Mode:

1. HCD puts Host Controller in Stop state by setting the Run/Stop bit to 0.

2. HCD pus Host Controller in Debug Mode by setting the SWDBG bit to 1.

3. HCD sets up the correct command list and Start Of Frame value for starting point in the Frame List.Single
Step Loop:

4. HCD sets Run/Stop bit to 1.

5. Host Controller executes next active TD, sets Run/Stop bit to 0, and stops.

6. HCD reads the USBCMD register to check if the single step execution is completed (HCHalted=1).

7. HCD checks results of TD execution. Go to step 4 to execute next TD or step 8 to end Software Debug mode.

8. HCD ends Software Debug mode by setting SWDBG bit to 0.

9. HCD sets up normal command list and Frame List table.

10. HCD sets Run/Stop bit to 1 to resume normal schedule execution.

In Software Debug mode, when the Run/Stop bit is set, the Host Controller starts. When a valid TD is found, the
Run/Stop bit is reset. When the TD is finished, the HCHalted bit in the USBSTS register (bit 5) is set.

The SW Debug mode skips over inactive TDs and only halts after an active TD has been executed. When the last
active TD in a frame has been executed, the Host Controller waits until the next SOF is sent and then fetches the
first TD of the next frame before halting.

This HCHalted bit can also be used outside of Software Debug mode to indicate when the Host Controller has
detected the Run/Stop bit and has completed the current transaction. Outside of the Software Debug mode, setting
the Run/Stop bit to 0 always resets the SOF counter so that when the Run/Stop bit is set the Host Controller starts
over again from the frame list location pointed to by the Frame List Index (see FRNUM Register description) rather
than continuing where it stopped.

2.1.2 USBSTSUSB STATUS REGISTER

I/O Address: Base + (02−03h)
Default Value: 0000h
Attribute: Read/Write Clear
size: 16 bits

This register indicates pending interrupts and various states of the Host Controller. The status resulting from a
transaction on the serial bus is not indicated in this register. Software sets a bit to 0 in this register by writing a 1 to
it. See section 4, Interrupts, for additional information concerning USB interrupt conditions.

Bit Description

15:6 Reserved.

5 HCHalted. The Host Controller sets this bit to 1 after it has stopped executing as a result of the
Run/Stop bit being set to 0, either by software or by the Host Controller hardware (debug mode or an
internal error).

4 Host Controller Process Error. The Host Controller sets this bit to 1 when it detects a fatal error
and indicates that the Host Controller suffered a consistency check failure while processing a
Transfer Descriptor. An example of a consistency check failure would be finding an illegal PID field
while processing the packet header portion of the TD. When this error occurs, the Host Controller
clears the Run/Stop bit in the Command register to prevent further schedule execution. A hardware
interrupt is generated to the system.

3 Host System Error. The Host Controller sets this bit to 1 when a serious error occurs during a host
system access involving the Host Controller module. In a PCI system, conditions that set this bit to 1
include PCI Parity error, PCI Master Abort, and PCI Target Abort. When this error occurs, the Host
Controller clears the Run/Stop bit in the Command register to prevent further execution of the
scheduled TDs. A hardware interrupt is generated to the system.

Universal Host Controller Interface (UHCI), Revision 1.1
R

14

Bit Description

2 Resume Detect. The Host Controller sets this bit to 1 when it receives a “RESUME” signal from a
USB device. This is only valid if the Host Controller is in a global suspend state (bit 3 of Command
register = 1).

1 USB Error Interrupt. The Host Controller sets this bit to 1 when completion of a USB transaction
results in an error condition (e.g., error counter underflow). If the TD on which the error interrupt
occurred also had its IOC bit set, both this bit and Bit 0 are set.

0 USB Interrupt (USBINT). The Host Controller sets this bit to 1 when the cause of an interrupt is a
completion of a USB transaction whose Transfer Descriptor had its IOC bit set.

The Host Controller also sets this bit to 1 when a short packet is detected (actual length field in TD is
less than maximum length field in TD), and short packet detection is enabled in that TD.

2.1.3 USBINTRUSB INTERRUPT ENABLE REGISTER

I/O Address: Base + (04−05h)
Default Value: 0000h
Attribute: Read/Write
size: 16 bits

This register enables and disables reporting of the corresponding interrupt to the software. When a bit is set and the
corresponding interrupt is active, an interrupt is generated to the host. Fatal errors (Host Controller Processor Error-
bit 4, USBSTS Register) cannot be disabled by the host controller. Interrupt sources that are disabled in this
register still appear in the Status Register to allow the software to poll for events.

Bit Description

15:4 Reserved.

3 Short Packet Interrupt Enable. 1=Enabled. 0=Disabled.

2 Interrupt On Complete (IOC) Enable. 1= Enabled. 0=Disabled.

1 Resume Interrupt Enable. 1= Enabled. 0=Disabled.

0 Timeout/CRC Interrupt Enable. 1= Enabled. 0=Disabled.

2.1.4 FRNUMFRAME NUMBER REGISTER

I/O Address: Base + (06−07h)
Default Value: 0000h
Attribute: Read/Write (Writes must be Word Writes)
Size: 16 bits

Bits [10:0] of this register contain the current frame number which is included in the frame SOF packet. This
register reflects the count value of the internal frame number counter. Bits [9:0] are used to select a particular entry
in the Frame List during schedule execution. This register is updated at the end of each frame time.

This register must be written as a word. Byte writes are not supported. This register cannot be written unless the
Host Controller is in the STOPPED state as indicated by the HCHalted bit (USBSTS register). A write to this register
while the Run/Stop bit is set (USBCMD register) is ignored.

Bit Description

15:11 Reserved.

10:0 Frame List Current Index/Frame Number. Bits [10:0] provide the frame number in the SOF Frame.
The value in this register increments at the end of each time frame (approximately every 1 ms). In
addition, bits [9:0] are used for the Frame List current index and correspond to memory address
signals [11:2].

R

Universal Host Controller Interface (UHCI), Revision 1.1

15

2.1.5 FLBASEADDFRAME LIST BASE ADDRESS REGISTER

I/O Address: Base + (08−0Bh)
Default Value: Undefined
Attribute: Read/Write
Size: 32 bits

This 32-bit register contains the beginning address of the Frame List in the system memory. HCD loads this register
prior to starting the schedule execution by the Host Controller. When written, only the upper 20 bits are used. The
lower 12 bits are written as zero (4-Kbyte alignment). The contents of this register are combined with the frame
number counter to enable the Host Controller to step through the Frame List in sequence. The two least significant
bits are always 00. This requires DWord alignment for all list entries. This configuration supports 1024 Frame List
entries.

Bit Description

31:12 Base Address. These bits correspond to memory address signals [31:12], respectively.

11:0 Reserved. Must be written as 0s.

2.1.6 START OF FRAME (SOF) MODIFY REGISTER

I/O Address: Base + (0Ch)
Default Value: 40h
Attribute: Read/Write
Size: 8 bits

This 1-byte register is used to modify the value used in the generation of SOF timing on the USB. Only the 7 least
significant bits are used. When a new value is written into the these 7 bits, the SOF timing of the next frame will be
adjusted. This feature can be used to adjust out any offset from the clock source that generates the clock that
drives the SOF counter. This register can also be used to maintain real time synchronization with the rest of the
system so that all devices have the same sense of real time. Using this register, the frame length can be adjusted
across the full range required by the USB specification. It’s initial programmed value is system dependent based on
the accuracy of hardware USB clock and is initialized by system BIOS. It may be reprogrammed by USB system
software at any time. Its value will take effect from the beginning of the next frame. This register is reset upon a
Host Controller Reset or Global Reset. Software must maintain a copy of its value for reprogramming if necessary.

Bit Description

7 Reserved.

6:0 SOF Timing Value. Guidelines for the modification of frame time are contained in Chapter 7 of the
USB Specification. The SOF cycle time (number of SOF counter clock periods to generate a SOF
frame length) is equal to 11936 + value in this field. The default value is decimal 64 which gives a SOF
cycle time of 12000. For a 12 MHz SOF counter clock input, this produces a 1 ms Frame period. The
following table indicates what SOF Timing Value to program into this field for a certain frame period.

Frame Length
(# 12Mhz Clocks) SOF Reg. Value

(decimal) (decimal)

11936 0
11937 1
 . .

 . .
11999 63
12000 64
12001 65
 . .
 . .
12062 126
12063 127

Universal Host Controller Interface (UHCI), Revision 1.1
R

16

2.1.7 PORTSCPORT STATUS AND CONTROL REGISTER

I/O Address: Base + (10−11h)Port 1
Base + (12−13h) Port 2

Default: 0080h
Access: Read/Write (WORD writeable only)
Size: 16 bits

After a Power-up reset, Global reset, or Host Controller reset, the initial conditions of a port are: No device
connected, Port disabled, and the bus line status is 00 (single-ended zero). Note: If a device is attached, the port
state will transition to the attached state and system software will process this as with any status change
notification. It make take up to 64 USB bit times for the port transition to occur. If the Host Controller is in global
suspend mode, then, if any of bits [6,3,1] gets set, the Host Controller will signal a global resume. Refer to Chapter
11 of the USB Specification for details on hub operation.

Bit Description

15:13 Reserved. Must written as 0s when writing this register.

12 SuspendR/W. 1=Port in suspend state. 0=Port not in suspend state. This bit should not be written
to a 1 if global suspend is active (bit 3=1 in the USBCMD register). Bit 2 and bit 12 of this register
define the hub states as follows:

Bits [12,2] Hub State

x0 Disable

01 Enable

11 Suspend

When in suspend state, downstream propagation of data is blocked on this port, except for single-
ended 0 resets (global reset and port reset). The blocking occurs at the end of the current
transaction, if a transaction was in progress when this bit was written to 1. In the suspend state, the
port is sensitive to resume detection. Note that the bit status does not change until the port is
suspended and that there may be a delay in suspending a port if there is a transaction currently in
progress on the USB.

11:10 Reserved.

9 Port ResetR/W. 1=Port is in Reset. 0=Port is not in Reset. When in the Reset State, the port is
disabled and sends the USB Reset signaling. Note that host software must guarantee that the
RESET signaling is active for the proper amount of time as specified in the USB Specification.

8 Low Speed Device AttachedRO. 1=Low speed device is attached to this port. 0=Full speed
device. Writes have no effect.

7 ReservedRO. Always read as 1.

6 Resume DetectR/W. 1= Resume detected/driven on port. 0=No resume (K-state) detected/driven
on port. Software sets this bit to a 1 to drive resume signaling. The Host Controller sets this bit to a 1
if a J-to-K transition is detected while the port is in the Suspend state. Note that when this bit is 1, a
K-state is driven on the port as long as this bit remains 1 and the port is still in suspend state.
Writing a 0 (from 1) causes the port to send a low speed EOP. This bit will remain a 1 until the EOP
has completed.

5:4 Line StatusRO. These bits reflect the D+ (bit 4) and D- (bit 5) signals lines’ logical levels. These
bits are used for fault detect and recovery as well as for USB diagnostics. This field is updated at
EOF2 time (See Chapter 11 of the USB Specification).

3 Port Enable/Disable ChangeR/WC. 1=Port enabled/disabled status has changed. 0=No change.
For the root hub, this bit gets set only when a port is disabled due to disconnect on the that port or
due to the appropriate conditions existing at the EOF2 point (See Chapter 11 of the USB
Specification). Software clears this bit by writing a 1 to it.

R

Universal Host Controller Interface (UHCI), Revision 1.1

17

Bit Description

2 Port Enabled/DisabledR/W. 1=Enable. 0=Disable. Ports can be enabled by host software only.
Ports can be disabled by either a fault condition (disconnect event or other fault condition) or by host
software. Note that the bit status does not change until the port state actually changes and that
there may be a delay in disabling or enabling a port if there is a transaction currently in progress on
the USB.

1 Connect Status ChangeR/WC. 1=Change in Current Connect Status. 0=No change.
Indicates a change has occurred in the port’s Current Connect Status (see bit 0). The hub device
sets this bit for any changes to the port device connect status, even if system software has not
cleared a connect status change. If, for example, the insertion status changes twice before system
software has cleared the changed condition, hub hardware will be “setting” an already-set bit (i.e.,
the bit will remain set). However, the hub transfers the change bit only once when the Host Controller
requests a data transfer to the Status Change endpoint. System software is responsible for
determining state change history in such a case. Software sets this bit to 0 by writing a 1 to it.

0 Current Connect StatusRO. 1=Device is present on port. 0=No device is present. This value
reflects the current state of the port, and may not correspond directly to the event that caused the
Connect Status Change bit (Bit 1) to be set.

2.1.7.1 Behavior Under Global or Selective Suspend Scenarios

Tables 5 and 6 show the behavior of the Host Controller when resume, connect and disconnect signaling is
received on ports in various states when the Host Controller is in or not in the global suspend state. (A full
explanation of hub behavior is given in Chapter 11 of the USB spec.) Generally speaking, the PORTSC register
associated with the port receiving the signaling reflects the status change appropriate for the type of signaling
received. Resume signaling (K-State) is recognized in the PORTSC register only if the port is in selective suspend
(PORTSC bits 2 and 12 are set). Resume will be recognized in the USBSTS register (bit 2) if resume is received on
a suspended or enabled port when the Host Controller is in the global suspend state (USBCMD register bit 3 is set).

The host may also initiate a resume on a suspended port or when the Host Controller has been suspended, by
writing the appropriate resume-detect/force-resume bit to a 1. A global resume is started by writing bit 4 in the
USBCMD register to a 1. A K-State signal will be sent on all enabled ports. (Any port which needs to send the
resume signal and is not enabled must be enabled before the resume is forced.) A resume can be forced on a
selectively suspended port by writing bit 6 in the corresponding PORTSC register to a 1.

Resume signaling is ended by clearing the appropriate suspend and resume bits. This is true for either selective or
global resumes or resumes initiated by signaling at the port or by the Host Controller. The suspend and resume bits
must be written to a 0 together in the same write cycle or the suspend must be written to a 0 after the resume bit is
reset in order to get proper single-ended zero termination of the resume signaling. Resume is ended on a
suspended Host Controller by writing USBCMD register bits 3 and 4 to 0. Resume is ended on a suspended port by
writing PORTSC register bits 6 and 12 to 0. If signaling on a suspended port in a globally suspended Host Controller
is the source of the resume, the Host Controller suspend and resume bits should be cleared before the port bits are
cleared.

Universal Host Controller Interface (UHCI), Revision 1.1
R

18

Table 5. Behavior During Resume When Host Not In Global Suspend State
Adjacent Port Response

Port Status and
Signaling Type

Signaled Port Response Enabled
Port

Disabled
Port

Suspended
Port

Port disabled,
resume K-State received

No Effect No Effect No Effect No Effect

Port suspended, Resume
K-State received

Resume reflected
downstream on signaled port.
Resume Detect status bit in
PORTSC register is set.

No Effect No Effect No Effect

Port enabled, disabled or
suspended and
disconnect received

PORTSC Connect and
Enable status bits are
cleared, and Connect Change
and Enable/Disable Change
status bits are set.

No Effect No Effect No Effect

Port disabled and
connect received

PORTSC Connect Status and
Connect Status Change bits
are set.

No Effect No Effect No Effect

Table 6. Behavior During Resume when Host is in Global Suspend State
Adjacent Port Response

Port Status and
Signaling Type

Signaled Port Response Enabled Port Disabled
Port

Suspended Port

Port enabled, Resume
K-State received

Resume reflected
downstream on signaled port.
Resume Detect Status bit in
USBSTS Reg is set.

Signal resume
downstream

No Effect No Effect

Port disabled, resume
K-State received

No Effect No Effect No Effect No Effect

Port suspended, Resume
K-State received

Resume signal reflected
downstream on signaled port.
Resume Detect status bit in
PORTSC and USBSTS Regs
are set.

Signal resume
downstream

No Effect No Effect

Port enabled, disabled or
suspended and
disconnect received

Resume Detect status bit in
USBSTS Reg is set.
PORTSC Connect and
Enable status bits are cleared
and Connect Change and
Enable/Disable Change bits
are set.

Signal resume
downstream

No Effect No Effect

Port disabled and
connect received

Resume Detect status bit in
USBSTS Reg is set.
PORTSC Connect status bit
and Connect Change status
bit are set.

Signal resume
downstream

No Effect No Effect

R

Universal Host Controller Interface (UHCI), Revision 1.1

19

2.2 PCI Configuration Registers (USB)

2.2.1 CLASSCCLASS CODE REGISTER

Address Offset: 09−0Bh
Default Value: 010180h
Attribute: Read Only
Size: 24 bits

This register contains the device programming interface information related to the Sub-Class Code and Base Class
Code definition. This register also identifies the Base Class Code and the function sub-class in relation to the Base
Class Code.

Bit Description

23:16 Base Class Code (BASEC). 0Ch= Serial Bus controller.

15:8 Sub-Class Code (SCC). 03h=Universal Serial Bus Host Controller.

7:0 Programming Interface (PI). 00h=No specific register level programming interface defined.

2.2.2 USBBASEIO SPACE BASE ADDRESS REGISTER

Address Offset: 20−23h
Default Value: 00000001h
Attribute: Read/Write
Size: 32 bits

This register contains the base address of the USB I/O Registers.

Bit Description

31:16 Reserved. Hardwired to 0s. Must be written as 0s.

15:5 Index Register Base Address. Bits [15:5] correspond to I/O address signals AD [15:5],
respectively.

4:1 Reserved. Read as 0.

0 Resource Type Indicator (RTE)—RO. This bit is hardwired to 1 indicating that the base address
field in this register maps to I/O space.

2.2.3 SBRNSERIAL BUS RELEASE NUMBER REGISTER

Address Offset: 60h
Default Value: See Description below
Attribute: Read only
Size: 8 bits

This register contains the release of the Universal Serial Bus Specification with which this Universal Serial Bus Host
Controller module is compliant.

Bit Description

7:0 Serial Bus Specification Release Number. All other combinations are reserved.

Bits[7:0] Release Number

00h Pre-release 1.0

10h Release 1.0

Universal Host Controller Interface (UHCI), Revision 1.1
R

20

3. DATA STRUCTURES

This section describes the details of the data structures used to communicate control, status, and data between
HCD (software) and the Host Controller (hardware)Frame Lists, Transfer Descriptors, and Queue Heads. Frame
Lists are aligned on 4-Kbyte boundaries. Transfer Descriptors and Queue Heads must be aligned on 16-byte
boundaries.

3.1 Frame List Pointer

Frame List pointers direct the host controller to the first item in the frame’s schedule. The frame pointers are
aligned on DWORD boundaries within the Frame List.

Frame List Pointer TQ00

0123431

00-03h

Host Controller Read/Write Host Controller Read Only

3.1.1 FRAME LIST POINTER (DWORD)

The frame list pointer contains a link pointer to the first data object to be processed in the frame, as well as the
control bits defined below.

Bit Description

31:4 Frame List Pointer (FLP). This field contains the address of the first data object to be processed in
the frame and corresponds to memory address signals [31:4], respectively.

3:2 Reserved. These bits must be written as 0s.

1 QH/TD Select (Q). 1=QH. 0=TD. This bit indicates to the hardware whether the item referenced by
the link pointer is a TD or a QH. This allows the Host Controller to perform the proper type of
processing on the item after it is fetched.

0 Terminate (T). 1=Empty Frame (pointer is invalid). 0=Pointer is valid (points to a QH or TD). This bit
indicates to the Host Controller whether the schedule for this frame has valid entries in it.

3.2 Transfer Descriptor (TD)

Transfer Descriptors (TDs) express the characteristics of the transaction requested on USB by a client. TDs are
always aligned on 16-byte boundaries. While there are four different transfer types supported by USB, all TDs are
formatted identically. The different transfer types are supported by a small number of control bits in the descriptor
that the Host Controller interprets during operation. All transfer descriptors have the same basic, 32-byte structure
(Figure 7). The last 4 DWords are for software use. During operation, the Host Controller hardware performs
consistency checks on some fields of the TD. If a consistency check fails, the Host Controller halts immediately and
issues an interrupt to the system. This interrupt is not maskable within the host controller.

R

Universal Host Controller Interface (UHCI), Revision 1.1

21

QVf0

0123431

00-03hLink Pointer

04-07h

MaxLen 08-0Bh

Buffer Pointer 0C-0Fh

T

7815162324 101114181920

R D

Status R ActLen

EndPt Device Address PID

R IOCISOLSC_ERRSPD

252627282930 21

R=Reserved

Host Controller Read/Write Host Controller Read Only

765007

Figure 7. Generic Form of Transfer Descriptor (TD)

3.2.1 TD LINK POINTER (DWORD 0: 00-03h)

The first DWord of a Transfer Descriptor (TD) contains a link pointer to another TD or a Queue Head (QH) as well
as control bits.

Bit Description

31:4 Link Pointer (LP). Bits [31:4] Correspond to memory address signals [31:4], respectively. This field
points to another TD or QH.

3 Reserved. Must be 0 when writing this field.

2 Depth/Breadth Select (Vf). 1=Depth first. 0=Breadth first. This bit is only valid for queued TDs and
indicates to the hardware whether it should process in a depth first or breadth first fashion. When set
to depth first, it informs the Host Controller to process the next transaction in the queue rather than
starting a new queue.

1 QH/TD Select (Q). 1=QH. 0=TD. This bit informs the Host Controller whether the item referenced by
the link pointer is another TD or a QH. This allows the Host Controller to perform the proper type of
processing on the item after it is fetched

0 Terminate (T). 1=Link Pointer field not valid. 0=Link Pointer field is valid. This bit informs the Host
Controller that the link pointer in this TD does not point to another valid entry. When encountered in a
queue context, this bit indicates to the Host Controller that there are no more valid entries in the
queue. A TD encountered outside of a queue context with the T bit set informs the Host Controller
that this is the last TD in the frame.

Universal Host Controller Interface (UHCI), Revision 1.1
R

22

3.2.2 TD CONTROL AND STATUS (DWORD 1: 04-07h)

Bit Description

31:30 Reserved (R).

29 Short Packet Detect (SPD). 1=Enable. 0=Disable. When a packet has this bit set to 1 and the
packet:
1. is an input packet;

2. is in a queue; and

3 successfully completes with an actual length less than the maximum length;

then the TD is marked inactive, the Queue Header is not updated and the USBINT status bit (Status
Register) is set at the end of the frame. In addition, if the interrupt is enabled, the interrupt will be
sent at the end of the frame.

Note that any error (e.g., babble or FIFO error) prevents the short packet from being reported. The
behavior is undefined when this bit is set with output packets or packets outside of queues.

28:27 This field is a 2-bit down counter that keeps track of the number of Errors
detected while executing this TD. If this field is programmed with a non zero value during setup, the
Host Controller decrements the count and writes it back to the TD if the transaction fails. If the
counter counts from one to zero, the Host Controller marks the TD inactive, sets the “STALLED” and
error status bit for the error that caused the transition to zero in the TD. An interrupt will be
generated to HCD if the decrement to zero was caused by Data Buffer error, Bitstuff error, or if
enabled, a CRC or Timeout error. If HCD programs this field to zero during setup, the Host Controller
will not count errors for this TD and there will be no limit on the retries of this TD.

Bits[28:27] Interrupt After

00 No Error Limit

01 1 error

10 2 errors

11 3 errors

Error Decrement Counter Error Decrement Counter

CRC Error Yes Data Buffer Error Yes
Timeout Error Yes Stalled No*
NAK Received No Bitstuff Error Yes
Babble Detected No*

* Detection of Babble or Stall automatically deactivates the TD. Thus, count is not decremented.

26 Low Speed Device (LS). 1=Low Speed Device. 0=Full Speed Device. This bit indicates that the
target device (USB data source or sink) is a low speed device, running at 1.5 Mb/s, instead of at full
speed. There are special restrictions on schedule placement for low speed TDs. See section 1.3,
Scheduling, for more information on low speed TD schedule placement. If a Host Controller root hub
port is connected to a full speed device and this bit is set to a 1 for a low speed transaction, the Host
Controller sends out a low speed preamble on that port before sending the PID. No preamble is sent
if a Host Controller root hub port is connected to a low speed device.

25 Isochronous Select (IOS). 1=Isochronous Transfer Descriptor. 0=Non-isochronous Transfer
Descriptor. The field specifies the type of the data structure. If this bit is set to a 1, the TD is an
isochronous transfer. Isochronous TDs are always marked inactive by the hardware after execution,
regardless of the results of the transaction.

24 Interrupt on Complete (IOC). 1=Issue IOC. This bit specifies that the Host Controller should issue
an interrupt on completion of the frame in which this Transfer Descriptor is executed. Even if the
Active bit in the TD is already cleared when the TD is fetched (no transaction will occur on USB), an
IOC interrupt is generated at the end of the frame.

R

Universal Host Controller Interface (UHCI), Revision 1.1

23

Bit Description

23:16 Status. This field is used by the Host Controller to communicate individual command execution
states back to HCD. This field contains the status of the last transaction performed on this TD. For
Isochronous TDs, this is always the completion status (no retries). For the other transfer types this
field is updated each time the TD is executed. The bit encodings are:

Bit Status Field Description

23 Active. Set to 1 by software to enable the execution of a message transaction by the Host
Controller. When the transaction associated with this descriptor is completed, the Host
Controller sets this bit to 0 indicating that the descriptor should not be executed when it is next
encountered in the schedule. The Active bit is also set to 0 if a stall handshake is received
from the endpoint. For Host Controller schedule execution operations, see the Script and Data
Transfer Primitives section.

22 Stalled. Set to a 1 by the Host Controller during status updates to indicate that a serious error
has occurred at the device/endpoint addressed by this TD. This can be caused by babble, the
error counter counting down to zero, or reception of the STALL handshake from the device
during the transaction. Any time that a transaction results in the Stalled bit being set, the
Active bit is also cleared (set to 0). If a STALL handshake is received from a SETUP
transaction, a Time Out Error will also be reported.

21 Data Buffer Error. Set to a 1 by the Host Controller during status update to indicate that the
Host Controller is unable to keep up with the reception of incoming data (overrun) or is unable
to supply data fast enough during transmission (underrun). When this occurs, the actual
length and Max Length field of the TD will not match. In the case of an underrun, the Host
Controller will transmit an incorrect CRC (thus invalidating the data at the endpoint) and leave
the TD active (unless error count reached zero). If a overrun condition occurs, the Host
Controller will force a timeout condition on the USB, invalidating the transaction at the source.

20 Babble Detected. Set to a 1 by the Host Controller during status update when a “babble” is
detected during the transaction generated by this descriptor. In addition to setting this bit, the
Host Controller also sets the “STALLED” bit (bit 22) to a 1. Since “babble” is considered a fatal
error for that transfer, setting the “STALLED” bit to a 1 insures that no more transactions
occur as a result of this descriptor. Detection of babble causes immediate termination of the
current frame. No further TDs in the frame are executed. Execution resumes with the next
frame list index.

19 NAK Received. Set to a 1 by the Host Controller during status update when the Host
Controller receives a “NAK” packet during the transaction generated by this descriptor. If a
NAK handshake is received from a SETUP transaction, a Time Out Error will also be
reported.

18 CRC/Time Out Error. Set to a 1 by the Host Controller during status update in the case that
no response is received from the target device/endpoint within the time specified by the
protocol chapter of the USB specification. This bit is also set to a 1 by the Host Controller
during status update when a CRC error is detected during the transaction associated with this
transfer descriptor. In the transmit case (OUT or SETUP Command), this is in response to the
Host Controller detecting a timeout from the target device/endpoint. In the receive case (IN
Command), this is in response to the Host Controller’s CRC checker circuitry detecting an
error on the data received from the device/endpoint or a NAK or STALL handshake being
received in response to a SETUP transaction.

17 Bitstuff Error. This bit is set to a 1 by the Host Controller during status update to indicate that
the receive data stream contained a sequence of more than 6 ones in a row.

16 Reserved (R).

15:11 Reserved (R).

10:0 Actual Length (ActLen). The Actual Length field is written by the Host Controller at the conclusion
of a USB transaction to indicate the actual number of bytes that were transferred. It can be used by
the software to maintain data integrity. The value programmed in this register is encoded as n-1 (see
Maximum Length field description in the TD Token, Dword 2).

Universal Host Controller Interface (UHCI), Revision 1.1
R

24

3.2.3 TD TOKEN (DWORD 2: 08-0Bh)

The third DWord of a transfer descriptor is the Packet Header. The Packet Header contains all the information
required to fill in a USB Start Token. Please refer to the USB Specification for detailed definitions.

Bit Description

31:21 Maximum Length (MaxLen). The Maximum Length field specifies the maximum number of data
bytes allowed for the transfer. The Maximum Length value does not include protocol bytes, such as
PID and CRC. The maximum data packet is 1280 bytes. The 1280 packet length is the longest
packet theoretically guaranteed to fit into a frame. Actual packet maximum lengths are set by HCD
according to the type and speed of the transfer. Note that the maximum length allowed by the USB
specification is 1023 bytes. The valid encodings for this field are:

Bits [31:21] Length

0x000 1 byte

0x001 2 bytes

.....

0x3FE 1023 bytes

0x3FF 1024 bytes

.....

0x4FF 1280 bytes

0x7FF 0 bytes (Null Data packet.)

Note that values from 500h to 7FEh are illegal and cause a consistency check failure.

In the transmit case, the Host Controller uses this value as a terminal count for the number of bytes
it fetches from host memory. In most cases, this is the number of bytes it will actually transmit. In
rare cases the Host Controller may be unable to access memory (e.g., due to excessive latency) in
time to avoid underrunning the transmitter. In this instance the Host Controller would transmit fewer
bytes than specified in the Maximum Length field.

In the receive case, this field represents the maximum number of bytes that the device should send
to the Host Controller. If the device continues to send after the Host Controller has received Max
Length bytes, a BABBLE error is generated. See the Interrupt section for further information.

20 Reserved (R).

19 Data Toggle (D). This bit is used to synchronize data transfers between a USB endpoint and the
host. This bit determines which data PID is sent or expected (0=DATA0 and 1=DATA1). The Data
Toggle bit provides a 1-bit sequence number to check whether the previous packet completed. This
bit must always be 0 for Isochronous TDs. See section 8.6 of the USB specification for a more
detailed description of Data Toggle Synchronization.

18:15 Endpoint (EndPt). This 4-bit field extends the addressing, internal to a particular device by providing
16 endpoints. This permits more flexible addressing of devices in which more than one sub-channel
is required.

14:8 Device Address. This field identifies the specific device serving as the data source or sink.

7:0 Packet Identification (PID). This field contains the Packet ID to be used for this transaction. Only
the IN (69h), OUT (E1h), and SETUP (2Dh) tokens are allowed. Any other value in this field causes
a consistency check failure resulting in an immediate halt of the Host Controller. Bits [3:0] are
complements of bits [7:4].

R

Universal Host Controller Interface (UHCI), Revision 1.1

25

3.2.4 TD BUFFER POINTER (DWORD 3: 0C-0Fh)

The fourth DWord of a Transfer Descriptor is the data buffer pointer for this transaction. It points to the beginning of
the buffer that will be used during this transaction. This buffer must be at least as long as the value in the Max
Length field described above. The data buffer may be byte-aligned.

Bit Description

31:0 Buffer Pointer. Bits [31:0] corresponds to memory address [31:0], respectively.

3.2.5 RESERVED FOR SOFTWARE (DWORDS [7:4])

The last 4 DWords of the Transfer Descriptor are reserved for use by software.

3.3 Queue Head (QH)

Queue heads (Figure 8) are special structures used to support the requirements of Control, Bulk, and Interrupt
transfers. Since these TDs are not automatically retired after each use their maintenance requirements can be
reduced by putting them into a queue. Queue Heads must be aligned on a 16-byte boundary.

Queue Head Link Pointer TQ00

0123431

00-03h

Queue Element Link Pointer TQ R0 04-07h

Host Controller Read/Write Host Controller Read Only

765008

Figure 8. Generic Form of Queue Head (QH)

3.3.1 QUEUE HEAD LINK POINTER (DWORD 0: 00-03h)

The first DWord of a Queue Head contains a link pointer to the next data object to be processed after any required
processing in this queue has been completed, as well as the control bits defined below.

Bit Description

31:4 Queue Head Link Pointer (QHLP). This field contains the address of the next data object to be
processed in the horizontal list and corresponds to memory address signals [31:4], respectively.

3:2 Reserved. These bits must be written as 0s.

1 QH/TD Select (Q). 1=QH. 0=TD. This bit indicates to the hardware whether the item referenced by
the link pointer is another TD or a QH. This allows the Host Controller to perform the proper type of
processing on the item after it is fetched.

0 Terminate (T). 1=Last QH (pointer is invalid). 0=Pointer is valid (points to a QH or TD). This bit
indicates to the Host Controller that this is the last QH in the schedule. If there are active TDs in this
queue, they are the last to be executed in this frame.

Universal Host Controller Interface (UHCI), Revision 1.1
R

26

3.3.2 QUEUE ELEMENT LINK POINTER (DWORD 1: 04-07h)

The second DWord of a Queue Head contains a link pointer to the first data object in the queue as well as the
control bits defined below.

Bit Description

31:4 Queue Element Link Pointer (QELP). This field contains the address of the next TD or QH to be
processed in this queue and corresponds to memory address signals [31:4], respectively.

3 Reserved. This bit must be 0.

2 Reserved. This bit has no impact on operation. It may vary simply as a side effect of the Queue
Element pointer update.

1 QH/TD Select (Q). 1=QH. 0=TD. This bit indicates to the hardware whether the item referenced by
the link pointer is another TD or a QH. This allows the Host Controller to do the proper type of
processing on the item after it is fetched. For entries in a queue, this bit is typically set to 0.

0 Terminate (T). 1=Terminate (No valid queue entries). This bit indicates to the Host Controller that
there are no valid TDs in this queue. When HCD has new queue entries it overwrites this value with
a new TD pointer to the queue entry.

3.4 Script and Data Transfer Primitives

The following sub-sections describe the details on how HCD and the Host Controller communicate via the Schedule
data structures. The discussion is organized in a top-down manner, beginning with the basics of walking the Frame
List, followed by a description of generic processing steps common to all transfer descriptors, and finally a
discussion on Transfer Queuing.

3.4.1 EXECUTING THE SCHEDULE

HCD programs the Host Controller with the starting address of the Frame List and the Frame List index, then
causes the Host Controller to execute the schedule by setting the Run/Stop bit in the Control register to Run. The
Host Controller processes the schedule one entry at a time (this discussion does not preclude prefetching of
schedule entries).

Schedule execution proceeds in the following fashion. The Host Controller first fetches an entry from the Frame List
(Figure 9). This entry has three fields. Bit 0 indicates whether the address pointer field is valid. Bit 1 indicates
whether the address points to a Transfer Descriptor or to a queue head. The third field is the pointer itself.

If isochronous traffic is to be moved in a given frame, the Frame List entry points to a Transfer Descriptor. If no
Isochronous data is to be moved in that frame, the entry points to a queue head or the entry is marked invalid and
no transfers are initiated in that frame. An entry is marked invalid when the T bit is set to 1. This indicates that the
frame pointer field is not a valid pointer value.

If the Frame List entry indicates that it points to a Transfer Descriptor, the Host Controller fetches the entry and
begins the operations necessary to initiate a transaction on the USB. Each TD contains a link field that points to the
next entry, as well as indicating whether it is a TD or a QH.

If the Frame List entry contains a pointer to a QH, the Host Controller processes the information from the QH to
determine the address of the next data object that it should process.

The Host Controller fetches the next entry from the Frame List when the millisecond allotted to the current frame
expires. If the Host Controller is not able to process all of the Isochronous transfer descriptors during a given
frame, those descriptors are retired by the software without having been executed. In a normal case this should
not occur since software sets up isochronous transactions such that they should all complete. If an error occurs,
such as a device babble or a consistency check error, then some of the isochronous transactions may not be
completed.

R

Universal Host Controller Interface (UHCI), Revision 1.1

27

Base Index

2111231

Frame
Counter

Frame List

Isochronous
Transfer Descriptors

Horizontal Execution

Queue Heads

Execution By Breadth
(Horizontal Execution)

Execution
By Depth
(Vertical
Execution)

Link
Pointer

Element
Link
Pointer

Link
Pointer

Element
Link
Pointer

Element
Link
Pointer

TQ

TQ

TQ

Frame Pointer

Frame Pointer

Frame Pointer

Q=Transfer Descriptor or Queue Head
T=Terminate

Frame List Base
Address Register

TD

TD

TD

TD

TD

TD

TD

TD

TD

TD TD TD

TD TD TD QHQ HQ H

00

Link
Pointer

Element
Link
Pointer

TD

TD

TD

QH

TD

TD

TD

TQFrame Pointer

TD TD TD

Interrupt Control and Bulk

Queue Heads

765009

Figure 9. Sample Schedule Layout

3.4.1.1 Processing Transfer Descriptors

There are three serial events that occur to complete execution of a Transfer Descriptor (Figure 10). These steps
are enumerated in the following list.

B us to
System
M em ory

Se ria l Bu s

Pre -T ran saction
M e m ory A cce sses

Q ue ue A cce sse s
Fo r D a ta Pa cket

Po st-T ra n saction
M em o ry A ccesses

R e ad
D ata 1

R ea d
D a ta N

Status /
L ink P tr
U pd a te

Tran sa ctio n N

arb . L ate ncy

R e ad
X fer
D e scr

To ken D ata H sk

765010

Figure 10. Diagram of an Example Transaction (For a Control Transfer)

Universal Host Controller Interface (UHCI), Revision 1.1
R

28

1. Host Controller fetches and decodes the Transfer Descriptor. Assuming a Host-to-Function transaction, the
Host Controller delays committing to the USB Transaction until the FIFO fills to an appropriate “trigger point”.
When this threshold is reached, the Host Controller can then begin issuing the Transaction Token. If the
direction is Function-to-Host, the Transaction Token may be issued as soon as ready, after the TD has been
received.

2. The second event is the USB Transaction itself. A Transaction takes up to three phases to complete. Its
duration depends on the maximum size data transfer, as specified in the TD.

3. The final event involves the time required to update the data structures for Post-Transaction Processing.
Typically, this time can be hidden via write posting on the bus to system memory, if the bus supports this
capability (e.g., the PCI bus).

The Host Controller executes a TD using the following, generalized algorithm. These basic steps are common
across all modes of TDs. Subsequent sections present processing steps unique to each TD mode.

1. Host Controller Fetches TD.

2. Build Token, actual bits are in TD.Token.

3. if (Host-to-Function) then
[PCI Access] issue request for data, (referenced through TD.BufferPointer)
wait for first chunk data arrival

end if

4. [Begin USB Transaction] Issue Token (from token built in 2, above) and begin data transfer.
if (Host-to-Function) then

goto 5
else

goto 6
end if

5. Fetch data from memory (via TD.BufferPointer) and transfer over USB until TD.Max-Length bytes have been
read and transferred. [Concurrent system memory and USB Accesses].
goto 8.

6. Wait for data to arrive (from USB). Write incoming bytes into memory beginning at TD.BufferPointer. Internal
HC buffer should signal end of data packet. Number of bytes received must be ≤ TD.Max-Length; The length
of the memory area referenced by TD.BufferPointer must be ≥ TD.Max-Length. [Concurrent system memory
and USB Accesses].

7. Issue handshake based on status of data received (Ack or Time-out). Go to 9.

8. Wait for handshake, if required [End of USB Transaction].

9. Update Status [PCI Access] (TD.Status and TD.ActualLength).

10. Proceed to next entry.

3.4.1.2 Processing Isochronous Transfer Descriptors

Isochronous descriptors are linked in lists on a frame basis. This permits the clients to schedule traffic to occur at
specific points in time with a 1 ms granularity. Isochronous service provides a fixed rate data transfer between the
host and the endpoint. Isochronous TDs are processed as follows:

1. Host Controller fetches the Isochronous TD.

2. Host Controller decodes the TD fields to determine transaction characteristics.

3. Host Controller issues USB token.

4. When transaction completes, the Host Controller updates status marking TD inactive.

5. Host Controller fetches the TD or QH pointed to by the Link Pointer field of the current TD.

6. Process continues.

R

Universal Host Controller Interface (UHCI), Revision 1.1

29

3.4.1.3 Processing Bulk, Control and Interrupt Transfer Descriptors

Bulk, Control, and Interrupt TDs derive their guaranteed data delivery transfer characteristic through the use of
queues. From a hardware perspective, they operate identically. The various behaviors are produced by the way in
which software programs the fields of the TDs. Non-isochronous TDs are processed as follows:

1. Host Controller fetches Queue Head (QH) and checks for active entry.

2. If entry is active, Host Controller fetches the TD or QH pointed to by the QH Element pointer. If TD, go to 3. If
QH, go to 1. If entry is inactive, go to 10.

3. Host Controller decodes the TD fields to determine transaction characteristics.

4. Host Controller issues USB token and performs transaction.

5. When transaction completes, Host Controller updates status.

6. If the transaction was successful, the TD is marked inactive. Go to 9.

7. Else if the transaction is unsuccessful, but the error threshold has not been reached, the TD is left active so it
can be retried in a subsequent frame. Go to 10.

8. Else if the transaction was unsuccessful and exceeded the error threshold, the TD is marked inactive. Go to 10.

9. Host Controller writes the link pointer from the current TD into the element pointer field of the QH structure. If
the Vf bit is set in the link pointer, go to 2. Otherwise, it goes to 10.

10. Host Controller fetches the QH or TD pointed to by the Queue Head Link Pointer field of the current QH. If the
Queue Head Link Pointer field has the T bit set to 1, The Host Controller idles until the 1 ms frame timer
expires.

11. Process continues.

Universal Host Controller Interface (UHCI), Revision 1.1
R

30

3.4.1.4 Command Register, Status Register, and TD Status Bit Interaction

Table 7 shows the interaction between bits in the Command register, Status Register, and status fields in the TD.

Table 7. Command Register, Status Register, and TD Status bit Interaction
Run/
Stop

USB
Int

USB
Error

Int

Resume
received

Host
System

error

HC
Process

Error

HC
halted

Config
flag

Active
bit in TD
status

Babble bit
in TD
status

Stall bit in
TD

status

Babble 1 0 0 1 1

CRC/Time
Out Error

1* 0 0* 1*

Illegal PID,
PID Error

0 1 1

PCI Master
Abort

0 1 1

PCI Target
Abort

0 1 1

Suspend
Mode

0** 1

Resumed
Received
from USB
and Suspend
Mode = 1

1

Run/Stop = 0 0 1

Config Flag
Set

1

HC Reset 0 0 0 0 0 0 0 0

Global Reset 0 0 0 0 0 0 0 0

Max Length
(illegal)

0 1 1

IOC = 1 1

Stall 1 0 1

Bit Stuff Error 1* 0* 1*

Short Packet
Detect

1 0

Data Buffer
Error

1* 0* 1*

* if error counter counted down from 1 to 0

** Suspend mode can be entered only when Run/Stop bit is 0

Note that if a NAK or STALL response is received from a SETUP transaction, a Time Out Error will be reported.
This will cause the Error counter to decrement and the CRC/Timeout Error status bit to be set within the TD Control
and Status DWORD during write back. If the Error counter changes from 1 to 0, the Active bit will be reset to 0 and
Stalled bit to 1 as normal.

R

Universal Host Controller Interface (UHCI), Revision 1.1

31

3.4.2 TRANSFER QUEUING

Transfer Queuing is a feature where transfer descriptors are accessed via a queue type data structure. The Host
Controller must go through a QH to access the top element in the queue. The operational semantics of transfer
queues, described in detail later, roughly dictate that the queue is not advanced until the top element’s execution
status satisfies some advance criteria. Transfer Queues are used to implement a guaranteed data delivery stream
to a USB Endpoint. Transfer Queues are composed of two partsa QH and a linked list. The linked list of TDs and
QHs has an indeterminate length (0 to n). Figure 11 illustrates the layouts of several possible transfer queues.

The QH contains two link pointers and is organized as two contiguous DWords. The first DWord is a horizontal
pointer (Queue Head Link Pointer), used to link a single transfer queue with either another transfer queue, or a TD
(target data structure depends on Q bit). If the T bit is set, this QH represents the last data structure in the current
Frame. The T bit informs the Host Controller that no further processing is required until the beginning of the next
frame. The second DWord is a vertical pointer (Queue Element Link Pointer) to the first data structure (TD or QH)
being managed by this QH. If the T bit is set, the queue is empty. This pointer may reference a TD or another QH.

Figure 11 illustrates four example queue conditions. The first QH (on far left) is an example of an “empty” queue;
the termination bit (T Bit), in the vertical link pointer field, is set to 1. The horizontal link pointer references another
QH. The next queue is the expected typical configuration. The horizontal link pointer references another QH, and
the vertical link pointer references a valid TD.

Typically, the vertical pointer in a QH points to a TD. However, as shown in Figure 11 (third example from left side
of figure) the vertical pointer could point to another QH. When this occurs, a new Q Context is entered and the Q
Context just exited is NULL (Host Controller will not update the vertical pointer field).

The far right QH is an example of a frame ‘termination’ node. Since its horizontal link pointer has its termination bit
set, the Host Controller assumes there is no more work to complete for the current Frame.

Frame List Pointer Q T

01231

Link Pointer (Horiz) Q T

01231

Link Pointer (Vert) Q T

Indicates 'NULL' Queue Head Link Pointer Q T

TD

QH

Link Pointer Q T

TD

Link Pointer Q T

TD

Indicates 'Nil' Next Pointer

Indicates 'Nil' Next Pointer

QH

Link Pointer (Horiz) Q T

01231

Link Pointer (Vert) Q T

QH

Link Pointer (Horiz) Q T

01231

Link Pointer (Vert) Q T

QH

Link Pointer (Horiz) Q T

01231

Link Pointer (Vert) Q T

QH

Link Pointer (Horiz) Q T

01231

Link Pointer (Vert) Q T

Link Pointer Q T

TD

Link Pointer Q T

TD

Link Pointer (Horz)=Queue Head Link Pointer
field in QH DWord 0

Link Pointer (Vert)=Queue Element Link Pointer
field in QH DWord 1

765011

Figure 11. Example Queue Conditions

Universal Host Controller Interface (UHCI), Revision 1.1
R

32

Transfer Queues are based on the following characteristics:

• A QH’s vertical link pointer (Queue Element Link Pointer) references the ‘Top’ queue member. A QH’s horizontal
link pointer (Queue Head Link Pointer) references the “next” work element in the Frame.

• Each queue member’s link pointer references the next element within the queue.1

• In the simplest model, the Host Controller follows vertical link point to a queue element, then executes the
element. If the completion status of the TD satisfies the advance criteria, the Host Controller advances the
queue by writing the just-executed TD’s link pointer back into the QH’s Queue Element link pointer. The next
time the queue head is traversed, the next queue element will be the Top element.

• The traversal has two options: Breadth first, or Depth first. A flag bit in each TD (Vf - Vertical Traversal Flag)
controls whether traversal is Breadth or Depth first. The default mode of traversal is Breadth-First. For Breadth-
First, the Host Controller only executes the top element from each queue. The execution path is:

QH (Queue Element Link Pointer) → TD → Write-Back to QH (Queue Element Link Pointer) → QH (Queue
Head Link pointer).

Breadth-First is also performed for every transaction execution that fails the advance criteria. This means that if
a queued TD fails, the queue does not advance, and the Host Controller traverses the QH’s Queue Head Link
Pointer.

• In a Depth-first traversal, the top queue element must complete successfully to satisfy the advance criteria for
the queue. If the Host Controller is currently processing a queue, and the advance criteria are met, and the Vf
bit is set, the Host Controller follows the TD’s link pointer to the next schedule work item.

• Note that regardless of traversal model, when the advance criteria are met, the successful TD’s link pointer is
written back to the QH’s Queue Element link pointer.

• When the Host Controller encounters a QH, it caches the QH internally, and sets internal state to indicate it is in
a Q-context. It needs this state to update the correct QH (for auto advancement) and also to make the correct
decisions on how to traverse the Frame List.

• Restricting the advancement of queues to advancement criteria implements a guaranteed data delivery stream.

• A queue is NEVER advanced on an error completion status (even in the event the error count was exhausted).

• Table 8 lists the general queue advance criteria, which are based on the execution status of the TD at the ’Top’
of a currently ‘active’ queue.

Table 8. Queue Advance Criteria
Function-to-Host (IN) Host-to-Function (OUT)

Non-NULL NULL Error/NAK Non-NULL NULL Error/NAK

Advance Q Advance Q Retry Q Element Advance Q Advance Q Retry Q Element

Table 9 is a decision table illustrating the valid combinations of link pointer bits and the valid actions taken when
advancement criteria for a queued transfer descriptor are met. The column headings for the link pointer fields are
encoded, based on the following list:

Q TQHLPQH

Q TQELPQE Vf

TDLP

TD

Vf Q T

765012

1 Understand that link pointers reference either Queue Heads OR Transfer Descriptors. The Host Controller has all
the information it requires to correctly traverse the list, built by Software.

R

Universal Host Controller Interface (UHCI), Revision 1.1

33

Legends:

QHLP = Queue Head Link Pointer (or Horizontal Link Pointer) QE.Q = Q bit in QE
QELP = Queue Element Link Pointer (or Vertical Link Pointer) QE.T = T bit in QE
TDLP = TD Link Pointer TD. Vf = Vf bit in TD
QH.Q = Q bit in QH TD.Q = Q bit in TD
QH.T = T bit in QH TD. Vf = Vf bit in TD

Table 9. USB Schedule List Traversal Decision Table
Q

Context
QH
Q

QH
T

QE
Q

QE
T

TD
 Vf

TD
Q

TD
T

Description

1 0 - - - - x 0 0 Not in Queue
Execute TD
Use TDLP to get next TD

2 0 - - - - x x 1 Not in Queue
Execute TD
End of Frame

3 0 - - - - x 1 0 Not in Queue
Execute TD
Use TDLP to get next (QH+QE)
Set Qcontext to 1.

4 1 0 0 0 0 0 x x In Queue
Use QELP to get TD
Execute TD
Update QELP with TDLP
Use QHLP to get next TD.

5 1 x x 0 0 1 0 0 In Queue
Use QELP to get TD
Execute TD
Update QELP with TDLP
Use TDLP to get next TD

6 1 x x 0 0 1 1 0 In Queue
Use QELP to get TD
Execute TD
Update QELP with TDLP
Use TDLP to get next (QH+QE)

7 1 0 0 x 1 x x x In Queue
Empty queue
Use QHLP to get next TD

8 1 x x 1 0 - - - In Queue
Use QELP to get (QH+QE)

9 1 x 1 0 0 0 x x In Queue
Use QELP to get TD
Execute TD
Update QELP with TDLP
End of Frame

10 1 x 1 x 1 x x x In Queue
Empty queue
End of Frame

11 1 1 0 0 0 0 x x In Queue
Use QELP to get TD
Execute TD
Update QELP with TDLP
Use QHLP to get next (QH+QE).

Universal Host Controller Interface (UHCI), Revision 1.1
R

34

Q
Context

QH
Q

QH
T

QE
Q

QE
T

TD
 Vf

TD
Q

TD
T

Description

12 1 1 0 x 1 x x x In Queue
Empty queue
Use QHLP to get next (QH+QE)

Figure 12 illustrates a List Walking State Diagram for a Host Controller. The state diagram is more robust than the
above presentation, as it contains transitions for standalone transfer descriptors, as well as queued transfer
descriptors (including Depth and Breadth Traversal). In addition, the diagram allows TDs and QHs to be referenced
from any link pointer which may be encountered by the Host Controller. The transitions in Figure 12 are derived
from the information in Table 9.

Start
of Frame

get
FrameList[i]

wait Till
EOF

T = 1

i++

!EOF

Fetch TD

Q = 0

Fetch QHD

Q = 1

Follow
QHD.Horz

Follow
QHD.Vert

Vert.T = 1Vert.T = 0

Q = 1

Q = 0

Execute TD Update QHD

Qcontext = 1
(No Advance Cond.)

Qcontext = 0 and
TD.Link.T = 0

Qcontext = 1 and
(TD.VF_Flag = 0 or

TD.Link.T = 1)

Qcontext = 1 and
(TD.VF_Flag = 1 and

TD.Link.Q = 1)

Use Queue Head Pointer

Use Link Pointer

Qcontext = 0 and
TD.Link.Q = 1

Qcontext = 1 and
TD.VF_Flag = 1 and
TD.Link.T = 0 and

TD.Link.Q = 0

T = 1

A

A

T = 1

Qcontext = 0 and
TD.Link.T = 1

A

Advance Condition
Qcontext = 1

Set Qcontext = 1

Set Qcontext = 1

Set Qcontext = 0

Figure 12. USB Linked List Traversal State Diagram

R

Universal Host Controller Interface (UHCI), Revision 1.1

35

4. INTERRUPTS

The USB Host Controller hardware (HC) provides interrupt capability based on a number of sources. There are two
general groups of interrupt sources, those resulting from execution of transactions in the schedule, and those
resulting from a Host Controller operation error. All transaction-based sources are maskable by the Host Controller
Driver (HCD) through the Host Controller’s Interrupt Enable register. Additionally, individual transfer descriptors can
be marked to generate an interrupt on completion. This section describes each interrupt source and the processing
that occurs in response to the interrupt. During normal operation, interrupts are deferred until the last transaction in
the frame is complete. This results in the normal runtime interrupts being processed in a batch fashion. If an HC
process error or host system error (both considered fatal) occur, the HC halts and immediately issues a hardware
interrupt to the system.

If an interrupt has been scheduled to be generated for the frame, the interrupt is not signaled until after the status
for the last complete transaction in the frame has been written back to host memory. This may sometimes result in
the interrupt not being signaled until after the Start Of Frame (SOF) for the next frame has been sent. This
guarantees that the software can safely process through Frame List Current Index -1 when it is servicing an
interrupt.

Initial interrupt processing is the same, regardless of the reason for the interrupt. When an interrupt is signaled by
the hardware, CPU control is transferred to HCD’s USB interrupt handler. The precise mechanism to accomplish
the transfer is OS specific. For this discussion it is just assumed that control is received. When the interrupt handler
receives control, its first action is to read the status from the Host Controller. At this point the handler can determine
whether the interrupt is due to schedule processing or some other event. HCD does the processing required to
service the hardware and then, through an OS specific mechanism, schedules a deferred procedure call (DPC)
which will execute later. The DPC routine uses a set of internal data structures to access the Queue Heads and
Transaction Descriptors of active endpoints to determine what events have occurred. The precise mechanisms
used are beyond the scope of this document.

4.1 Transaction Based

4.1.1 CRC ERROR / TIME-OUT

A CRC/Timeout error occurs when a packet transmitted from the host to a USB device or a packet transmitted from
a USB device to the host generates a CRC error. The Host Controller is informed of this event by a time out from
the USB device or by the Host Controller’s CRC checker generating an error on reception of the packet.
Additionally, a USB bus time-out occurs when USB devices do not respond to a transaction phase within a period
defined in the USB specification. Either of these conditions will cause the C_Err field of the TD to be decremented.
This field is initialized to 3 for all data types except Isochronous by the HCD software. When the C_Err field
decrements to zero, several things occur; The Active bit in the TD is cleared, the Stalled bit in the TD is set, the
CRC/Timeout bit in the TD is set. At the end of the frame, the USB Error Interrupt bit is set in the HC status
register. If the CRC/Timeout interrupt is enabled in the Interrupt Enable register, a hardware interrupt will be
signaled to the system.

4.1.2 INTERRUPT ON COMPLETION (IOC)

Transfer Descriptors contain a bit that can be set to cause an interrupt on their completion. The completion of the
transaction associated with that block causes the USB Interrupt bit in the HC Status Register to be set at the end of
the frame in which the transfer completed. When a TD is encountered with the IOC bit set to 1, the IOC bit in the
HC Status register is set to 1 at the end of the frame if the active bit in the TD is set to 0 (even if it was set to zero
when initially read). If the IOC Enable bit in the Interrupt Enable register is set, a hardware interrupt is signaled to
the system. This status bit is set whether the TD completes successfully, or because of errors. If the completion is
because of errors, the USB Error bit in the HC status register is also set.

Universal Host Controller Interface (UHCI), Revision 1.1
R

36

4.1.3 SHORT PACKET DETECT (SPD)

A transfer set is a collection of data which requires more than 1 USB transaction to completely move the data
across the USB. An example might be a large print file which requires numerous TDs in multiple frames to
completely transfer the data. Reception of a data packet that is less than the endpoint’s Max Packet size during
Control, Bulk or Interrupt transfers signals the completion of the transfer set, even if there are active TDs remaining
for this transfer set. Setting the SPD bit in a TD indicates to the HC to set the USB Interrupt bit in the HC status
register at the end of the frame in which this event occurs. This feature streamlines the processing of input on these
transfer types. If the Short Packet Interrupt Enable bit in the Interrupt Enable register is set, a hardware interrupt is
signaled to the system at the end of the frame where the event occurred.

4.1.4 SERIAL BUS BABBLE

When a device transmits on the USB for a time greater than its assigned Max Length, it is said to be babbling.
Since isochrony can be destroyed by a babbling device, this error results in the Active bit in the TD being cleared to
0 and the Stalled and Babble bits being set to one. The C_Err field is not decremented for a babble. The USB Error
Interrupt bit in the HC Status register is set to 1 at the end of the frame. A hardware interrupt is signaled to the
system. If an EOF babble was caused by the host controller (due to incorrect schedule for instance), the host
controller will force a bit stuff error followed by an EOP and the start of the next frame.

4.1.5 STALLED

This event indicates that a device/endpoint returned a STALL handshake during a transaction or that the
transaction ended in an error condition. This indicates that the endpoint has reached a condition where no more
activity can occur without intervention from the driver. In addition to the TDs Stalled bit being set, the Active bit will
be cleared. HCD will not accept any more transfers on this endpoint until the condition is cleared by driver software.
Like the Babble event, reception of a STALL does not decrement the error counter. A hardware interrupt is
signaled to the system.

4.1.6 DATA BUFFER ERROR

This event indicates that an overrun of incoming data or a underrun of outgoing data has occurred for this
transaction. This would generally be caused by the host controller not being able to access required data buffers
in memory within necessary latency requirements. Either of these conditions will cause the C_Err field of the TD to
be decremented. This field is initialized to 3 for all data types except Isochronous by the HCD software. When the
C_Err field decrements to zero, the Active bit in the TD is cleared to 0, the Stalled bit is set to one, the USB Error
Interrupt bit in the HC Status register is set to 1 at the end of the frame and a hardware interrupt is signaled to the
system.

4.1.7 BIT STUFF ERROR

A bit stuff error results from the detection of a sequence of more that 6 ones in a row within the incoming data
stream. This will cause the C_Err field of the TD to be decremented. This field is initialized to 3 for all data types
except Isochronous by the HCD software. When the C_Err field decrements to zero, the Active bit in the TD is
cleared to 0, the Stalled bit is set to one, the USB Error Interrupt bit in the HC Status register is set to 1 at the end
of the frame and a hardware interrupt is signaled to the system.

R

Universal Host Controller Interface (UHCI), Revision 1.1

37

4.2 Non-Transaction Based

4.2.1 RESUME RECEIVED

This event indicates that the HC received a RESUME signal from a device on the USB during a global suspend. If
this interrupt is enabled in the HC Interrupt Enable register, a hardware interrupt will be signaled to the system
allowing the USB to be brought out of the suspend state and returned to normal operation.

4.2.2 HOST CONTROLLER PROCESS ERROR

The HC monitors certain critical fields during operation to ensure that it does not process corrupted data structures.
These include checking for a valid PID and verifying that the MaxLength field is less than 1280. If it detects a
condition that would indicate that it is processing corrupted data structures, it immediately halts processing, sets the
HC Process Error bit in the HC Status register and signals a hardware interrupt to the system. If the transaction
has already started on the USB when the condition is recognized, the host controller should force an error condition
on the bus (such as invalid PID or inserted bit stuff error) and then halt. This interrupt cannot be disabled through
the Interrupt Enable register. This is a catastrophic failure requiring major software intervention at the system level
for recovery.

4.2.3 HOST SYSTEM ERROR

The Host Controller sets this bit to 1 when a serious error occurs during a host system access involving the Host
Controller module. In a PCI system, conditions that set this bit to 1 include PCI Parity error, PCI Master Abort, and
PCI Target Abort. When this error occurs, the Host Controller clears the Run/Stop bit in the Command register to
prevent further execution of the scheduled TDs. This interrupt cannot be disabled through the Interrupt Enable
register. This level of failure would typically be handled by System Software rather than HCD.

Universal Host Controller Interface (UHCI), Revision 1.1
R

38

5. KEYBOARD AND MOUSE LEGACY SUPPORT

In today’s PC environment, windows-based application software typically does not directly access I/O locations for
the keyboard and mouse functions. The system software provides this function. However, in earlier environments
some application software directly accessed the keyboard controller’s I/O space. In most desktop PC systems the
keyboard controller is based on the 8042 controller.

For a USB-based keyboard and mouse to be software compatible with an 8042 controller-based keyboard and
mouse, older software must be able to access the same I/O locations with the same values. Furthermore, the time
delays associated with the ports must be roughly the same.

The 8042 controller-based keyboard controller (KBC) typically has the following characteristics:

• It provides serial interfaces for both the keyboard and PS/2-style mouse.

• The 8042 controller’s registers are mapped to the ISA I/O addresses 60h and 64h.

• The 8042 controller asserts two interrupt lines; IRQ1 for the keyboard and IRQ12 for the mouse.

This section provides a legacy PCI device implementation example that supports the 8042 controller-based
keyboard and mouse commands in a USB environment. The legacy software support method described herein
requires a combination of hardware and software.

8042 controller emulation is only needed in certain OS environments (e.g., DOS). Windows*, Windows NT*,
Windows 95*, and UNIX-based programs do not directly access the hardware. Note however, that Windows 95
supports a drop-through mode in which DOS applications are permitted to directly access the I/O space.

Note that UHCI does not require implementation of legacy keyboard and mouse support. Neither is this
implementation the only possible solution for providing this support.

5.1 Operation

Software that is run early in the boot process must be modified to configure the USB controller, enable the
keyboard and mouse, and set up the USB controller’s scheduler. This code is typically the system BIOS. The major
assumptions are:

• A standard 8042 device-like keyboard controller is present in the system at IO locations 60h and 64h. The
control logic described here must be able to selectively intercept or pass through IO cycles targeted for the
KBC.

• No changes are needed to the 8042 keyboard controller code. However, if changes can be made, then the
amount of SMM code required can be reduced.

• USB aware operating systems handle the host controller completely without any legacy hardware or software
support. No operating system should take control of the USB host controller while the Legacy Support hardware
and software are enabled.

The following two sections describe the general command and data sequences.

5.1.1 COMMANDS GOING TO THE KBC, KEYBOARD, OR MOUSE

Some legacy software will attempt to send commands directly to the keyboard controller (8042 device). In addition,
some legacy software may also send commands directly to the keyboard or mouse, although this is rare. This case
is typically done by BIOS, which would be already aware of the peripheral being on USB.

The keyboard and mouse commands perform operations like resetting the keyboard, setting the typematic rate,
turning on or off LEDs, or changing the scan-code translation method. The software writes the command into the
8042 keyboard controller. The 8042 keyboard controller sends the command out serially to the keyboard or mouse.
An interrupt can be generated when the action completes. A USB-based keyboard has similar commands (reset,
turn on/off LEDs, etc.) and the commands needs are sent via USB. This leads to the following requirements:

R

Universal Host Controller Interface (UHCI), Revision 1.1

39

• Since no changes are desired in the 8042 controller code, the combination of software and system logic
must determine if the data going to the 8042 controller should be diverted to the keyboard on the USB.
The logic must be able to generate an SMI# based on command writes to the keyboard controller.
Furthermore, for multi-byte commands, the software must be able to generate an SMI# during a read cycle
(which might occur in-between subsequent writes).

• The logic must be able to selectively generate an SMI# based on reads or writes to the keyboard
controller. Cycles where an SMI# is generated are not passed to the keyboard controller.

• There must be SMM code to interpret the commands and status results associated with the keyboard
controller.

• For one specific case, the keyboard controller is used to control the A20GATE signal. In this case, it is not
desired to invoke SMI# due to the great performance degradation. To handle this specific case, the logic
must "pass" commands associated with setting and resetting the A20GATE signal. Thus, the fourth
required change is that the logic must pass A20GATE sequences to the external 8042 controller. This is
called the “A20GATE Pass Through Sequence”.

5.1.2 KEYSTROKE OR MOUSE DATA RECEIVED

In legacy hardware implementations, one of the more common actions performed by the 8042 controller is receiving
keystroke or mouse movement data. The keyboard controller deserializes the incoming data streams, generates an
interrupt, provides a status value in the status register, and finally provides the data bytes associated with the
keystroke or mouse movement. A USB-based keyboard or mouse will be similar; however, the USB controller will
store the incoming data in main memory, rather than at an I/O location.

This method requires that SMM code be invoked based on the incoming USB data. The SMM code manages the
USB data queues, takes the received data, and writes it into the 8042 device using the "D2" (keyboard) or "D3"
(mouse) commands. This instructs the 8042 controller to process the incoming data as if it had come from the
standard PS/2 keyboard or mouse. Once the data is placed in its registers, the 8042 controller generates the
appropriate interrupt (IRQ1 for the keyboard or IRQ12 for the mouse). The data is then processed by the normal
interrupt handlers.

To take advantage of this scheme, the SMM code must be invoked (via SMI#). The USB controller must also be
able to generate an SMI# based on the data being stored to main memory. This results in the following
requirements:

• There must be the ability to generate an SMI# based on a USB interrupt.

• There must be additional code to move the data to the appropriate registers and manage the USB
controller during runtime. It is envisioned that this would be part of the SMM code.

5.2 Register Interface

For implementations in a PCI device, the legacy support register is located at offset C0−C1h, in function 2 PCI
configuration space.

5.2.1 LEGSUPLEGACY SUPPORT REGISTER (PCI Configuration - Function 2)

PCI Address Offset: C0−C1h
Default: 2000h
Attribute: Read/Write Clear

This register provides control and status capability for the legacy keyboard and mouse functions.

Bit Description

15 End OF A20GATE Pass Through Status (A20PTS)R/WC. This bit is set to 1 to indicate that the A20GATE pass-
through sequence has ended. Software must use the enable bits to determine the exact cause of an SMI#. Software
clears this bit by writing a 1 to it.

14 Reserved.

Universal Host Controller Interface (UHCI), Revision 1.1
R

40

Bit Description

13 USB PIRQ Enable (USBPIRQDEN) R/W. 1 (default) = USB interrupt is routed to PIRQD. 0 = USB interrupt does
not route to PIRQD. This bit prevents the USB controller from generating an interrupt. Note that it will probably be
configured to generate an SMI using bit 4 of this register. Default to 1 for compatibility with older USB software.

12 USB IRQ Status (USBIRQS) RO. This bit is set to 1 to indicate that the USB IRQ is active. Software must use the
enable bits to determine the exact cause of an SMI#. Writing a 1 to this bit will have no effect. Software must clear
the IRQ via the USB controller.

11 Trap By 64h Write Status (TBY64W)R/WC. This bit is set to 1 to indicate that a write to port 64h occurred.
Software must use the enable bits to determine the exact cause of an SMI#. Software clears this bit by writing a 1 to
it.

10 Trap By 64h Read Status (TBY64R)R/WC. This bit is set to 1 to indicate that a read to port 64h occurred.
Software must use the enable bits to determine the exact cause of an SMI#. Software clears this bit by writing a 1 to
it.

9 Trap By 60h Write Status (TBY60W)R/WC. This bit is set to 1 to indicate that a write to port 60h occurred. Software
must use the enable bits to determine the exact cause of an SMI#. Software clears this bit by writing a 1 to it.

8 Trap By 60h Read Status (TBY60R)R/WC. This bit is set to 1 to indicate that a read to port 60h occurred. Software
must use the enable bits to determine the exact cause of an SMI#. Software clears this bit by writing a 1 to it.

7 SMI At End Of Pass Through Enable (SMIEPTE)R/W. 1=Enable the generation of an SMI when the A20GATE
pass-through sequence has ended. 0 (default) = Disable. This may be required if an SMI is generated by a USB
interrupt in the middle of an A20GATE pass through sequence and needs to be serviced later.

6 Pass Through Status (PSS)RO. 1 =A20GATE pass through sequence is currently in progress. 0 (default) = Not
currently executing the A20GATE pass-through sequence. This bit indicates that the host controller is executing the
A20GATE pass-through sequence. If software needs to reset this bit, it should set Bit 5 to 0 causing the host controller
to immediately end the A20GATE pass through sequence.

5
A20Gate Pass Through Enable (A20PTEN)R/W. 1=Enable A20GATE pass through sequence. 0 (default) = Disable.
When enabled, the logic will pass through the following A20GATE command sequence:

Cycle Address Data

Write 64h D1h (1 or more) (Starts the Sequence)

Write 60h xxh

Read 64h N/A (0 or more)

Write 64h Ffh (Standard End of A20GATE Pass Through Sequence)

Any deviation seen in the above sequence will cause the host controller to immediately exit the sequence and return to
standard operation, performing an I/O trap and generating an SMI# if appropriate enable bits are set.

When enabled, SMI# will not be generated during the sequence, even if the various enable bits are set. Note that during
a Pass-through sequence, the above status bits will not be set for the I/O accesses that are part of the sequence.

4 Trap/SMI ON IRQ Enable (USBSMIEN)R/W. 1 = Enable SMI# generation on USB IRQ.
0 (default) = Disable.

3 Trap/SMI On 64h Write Enable (64WEN)R/W. 1 = Enable I/O Trap and SMI# generation on port 64h write.
0 (default) = Disable.

2 Trap/SMI On 64h Read Enable (64REN)R/W. 1 = Enable I/O Trap and SMI# generation on port 64h read.
0 (default) = Disable.

1 Trap/SMI On 60h Write Enable (60WEN)R/W. 1 = Enable I/O Trap and SMI# generation on port 60h write.
0 (default) = Disable.

0 Trap/SMI On 60h Read Enable (60REN)R/W. 1 = Enable I/O Trap and SMI# generation on port 60h read.
0 (default) = Disable.

R

Universal Host Controller Interface (UHCI), Revision 1.1

41

5.2.2 KBC ACCESS LOGIC

The logic also needs to block the accesses to the 8042 controller. If there is an external 8042 controller, this is
accomplished by not activating the 8042 controller chip select (e.g., logically ANDing the 4 enables for 60R, 60W,
64R, 64W with the 4 types of accesses to determine if 8042CS should go active). It must allow for the "A20GATE
Pass Through Sequence.

Where the keyboard controller is not accessed using an explicit chip select (e.g., in some Super I/O components),
the ISA cycle has to be modified so that the external device does not recognize the keyboard cycle. Several options
are available:

1. Allow the address and data to flow through normally, but block the IOR# or IOW#.

2. Allow the data and IOR# or IOW# to flow through normally, but modify the address to a value that does not
cause the keyboard controller to respond.

3. Allow the data and IOR# or IOW# to flow through normally, but drive the AEN signal active so that the
peripheral thinks a DMA cycle is occurring, and will not respond.

4. The PCI cycle will be terminated normally, but no ISA cycle will occur.

5.3 Other Considerations

Table 10 lists considerations when implementing the method described in this section.

Table 10. Considerations
Consideration Solution

The USB controller should only generate an interrupt when an event
has occurred on USB. It should not generate an interrupt on every
frame. Otherwise, the number of SMIs would be high and performance
would suffer.

Furthermore, other devices not used by the legacy software may have
to be shut down if possible, because a large number of SMIs will occur.

Don't permit other USB devices to
be active while in the legacy support
mode.

A method must be developed to enable and disable the legacy support
mode when entering and exiting a USB aware operating system.

UHCI’s HCD is aware of the legacy
support. This is required for any
other proposed scheme.

Can’t pulse the mouse CLK and data signals using the F0h command. None, but should not be an issue.

Password protection can be done in the 8042 device. SMM and the USB keyboard must
handle this case.

	Title Page
	Universal Host Controller Agreement
	Table Of Contents
	REVISION HISTORY
	Universal Host Controller Interface (UHCI)
	1. OVERVIEW
	1.1 Data Transfer Types
	1.2 UHCI Data Structures
	1.3 Scheduling
	1.4 Root Hub/Ports

	2. REGISTER DESCRIPTION
	2.1 USB I/O Registers
	2.2 PCI Configuration Registers (USB)

	3. DATA STRUCTURES
	3.1 Frame List Pointer
	3.2 Transfer Descriptor (TD)
	3.3 Queue Head (QH)
	3.4 Script and Data Transfer Primitives

	4. INTERRUPTS
	4.1 Transaction Based
	4.2 Non-Transaction Based

	5. KEYBOARD AND MOUSE LEGACY SUPPORT
	5.1 Operation
	5.2 Register Interface
	5.3 Other Considerations

